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12.1 Introduction

This chapter considers key establishment protocols and related cryptographic techniques
which provide shared secrets between two or more parties, typically for subsequent use
as symmetric keys for a variety of cryptographic purposes including encryption, message
authentication, and entity authentication. The main focus is two-party key establishment,
with the aid of a trusted third party in some cases. While many concepts extend naturally to
multi-party key establishment including conference keying protocols, such protocols rapid-
ly become more complex, and are considered here only briefly, as is the related area of secret
sharing. Broader aspects of key management, including distribution of public keys, certifi-
cates, and key life cycle issues, are deferred to Chapter 13.

Relationships to other cryptographic techniques. Key establishment techniques known
as key transport mechanisms directly employ symmetric encryption (Chapter 7) or public-
key encryption (Chapter 8). Authenticated key transport may be considered a special case
of message authentication (Chapter 9) with privacy, where the message includes a cryp-
tographic key. Many key establishment protocols based on public-key techniques employ
digital signatures (Chapter 11) for authentication. Others are closely related to techniques
for identification (Chapter 10).

Chapter outline

The remainder of this chapter is organized as follows. §12.2 provides background mate-
rial including a general classification, basic definitions and concepts, and a discussion of
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490 Ch. 12 Key Establishment Protocols

objectives. §12.3 and §12.4 discuss key transport and agreement protocols, respectively,
based on symmetric techniques; the former includes several protocols involving an on-line
trusted third party. §12.5 and §12.6 discuss key transport and agreement protocols, respec-
tively, based on asymmetric techniques; the former includes protocols based on public-key
encryption, some of which also employ digital signatures, while the latter includes selected
variations of Diffie-Hellman key agreement. §12.7 and §12.8 consider secret sharing and
conference keying, respectively. §12.9 addresses the analysis of key establishment proto-
cols and standard attacks which must be countered. §12.10 contains chapter notes with ref-
erences.

The particular protocols discussed provide a representative subset of the large number
of practical key establishment protocols proposed to date, selected according to a number
of criteria including historical significance, distinguishing merits, and practical utility, with
particular emphasis on the latter.

12.2 Classification and framework

12.2.1 General classification and fundamental concepts

12.1 Definition A protocol is a multi-party algorithm, defined by a sequence of steps precisely
specifying the actions required of two or more parties in order to achieve a specified objec-
tive.

12.2 Definition Key establishment is a process or protocol whereby a shared secret becomes
available to two or more parties, for subsequent cryptographic use.

Key establishment may be broadly subdivided into key transport and key agreement,
as defined below and illustrated in Figure 12.1.

12.3 Definition A key transport protocol or mechanism is a key establishment technique where
one party creates or otherwise obtains a secret value, and securely transfers it to the other(s).

12.4 Definition A key agreement protocol or mechanism is a key establishment technique in
which a shared secret is derived by two (or more) parties as a function of information con-
tributed by, or associated with, each of these, (ideally) such that no party can predetermine
the resulting value.

Additional variations beyond key transport and key agreement exist, including various
forms of key update, such as key derivation in §12.3.1.

Key establishment protocols involving authentication typically require a set-up phase
whereby authentic and possibly secret initial keying material is distributed. Most protocols
have as an objective the creation of distinct keys on each protocol execution. In some cases,
the initial keying material pre-defines a fixed key which will result every time the protocol is
executed by a given pair or group of users. Systems involving such static keys are insecure
under known-key attacks (Definition 12.17).

12.5 Definition Key pre-distribution schemes are key establishment protocols whereby the re-
sulting established keys are completely determined a priori by initial keying material. In
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§12.2 Classification and framework 491

contrast, dynamic key establishment schemes are those whereby the key established by a
fixed pair (or group) of users varies on subsequent executions.

Dynamic key establishment is also referred to as session key establishment. In this case
the session keys are dynamic, and it is usually intended that the protocols are immune to
known-key attacks.

key establishment

key transport key agreement

asymmetric
techniques

techniques
symmetric

key
pre-distributiondynamic

key establishment

Figure 12.1: Simplified classification of key establishment techniques.

Use of trusted servers

Many key establishment protocols involve a centralized or trusted party, for either or both
initial system setup and on-line actions (i.e., involving real-time participation). This party
is referred to by a variety of names depending on the role played, including: trusted third
party, trusted server, authentication server, key distribution center (KDC), key translation
center (KTC), and certification authority (CA). The various roles and functions of such
trusted parties are discussed in greater detail in Chapter 13. In the present chapter, discus-
sion is limited to the actions required of such parties in specific key establishment protocols.

Entity authentication, key authentication, and key confirmation

It is generally desired that each party in a key establishment protocol be able to determine
the true identity of the other(s) which could possibly gain access to the resulting key, imply-
ing preclusion of any unauthorized additional parties from deducing the same key. In this
case, the technique is said (informally) to provide secure key establishment. This requires
both secrecy of the key, and identification of those parties with access to it. Furthermore,
the identification requirement differs subtly, but in a very important manner, from that of
entity authentication – here the requirement is knowledge of the identity of parties which
may gain access to the key, rather than corroboration that actual communication has been
established with such parties. Table 12.1 distinguishes various such related concepts, which
are highlighted by the definitions which follow.

While authentication may be informally defined as the process of verifying that an
identity is as claimed, there are many aspects to consider, including who, what, and when.
Entity authentication is defined in Chapter 10 (Definition 10.1), which presents protocols
providing entity authentication alone. Data origin authentication is defined in Chapter 9
(Definition 9.76), and is quite distinct.
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492 Ch. 12 Key Establishment Protocols

Authentication term Central focus

authentication depends on context of usage
entity authentication identity of a party, and aliveness at a given instant
data origin authentication identity of the source of data
(implicit) key authentication identity of party which may possibly share a key
key confirmation evidence that a key is possessed by some party
explicit key authentication evidence an identified party possesses a given key

Table 12.1: Authentication summary – various terms and related concepts.

12.6 Definition Key authentication is the property whereby one party is assured that no other
party aside from a specifically identified second party (and possibly additional identified
trusted parties) may gain access to a particular secret key.

Key authentication is independent of the actual possession of such key by the second
party, or knowledge of such actual possession by the first party; in fact, it need not involve
any action whatsoever by the second party. For this reason, it is sometimes referred to more
precisely as (implicit) key authentication.

12.7 Definition Key confirmation is the property whereby one party is assured that a second
(possibly unidentified) party actually has possession of a particular secret key.

12.8 Definition Explicit key authentication is the property obtained when both (implicit) key
authentication and key confirmation hold.

In the case of explicit key authentication, an identified party is known to actually pos-
sess a specified key, a conclusion which cannot otherwise be drawn. Encryption applica-
tions utilizing key establishment protocols which offer only implicit key authentication of-
ten begin encryption with an initial known data unit serving as an integrity check-word, thus
moving the burden of key confirmation from the establishment mechanism to the applica-
tion.

The focus in key authentication is the identity of the second party rather than the value
of the key, whereas in key confirmation the opposite is true. Key confirmation typically
involves one party receiving a message from a second containing evidence demonstrating
the latter’s possession of the key. In practice, possession of a key may be demonstrated by
various means, including producing a one-way hash of the key itself, use of the key in a
(keyed) hash function, and encryption of a known quantity using the key. These techniques
may reveal some information (albeit possibly of no practical consequence) about the value
of the key itself; in contrast, methods using zero-knowledge techniques (cf. §10.4.1) allow
demonstration of possession of a key while providing no additional information (beyond
that previously known) regarding its value.

Entity authentication is not a requirement in all protocols. Some key establishment
protocols (such as unauthenticated Diffie-Hellman key agreement) provide none of entity
authentication, key authentication, and key confirmation. Unilateral key confirmation may
always be added e.g., by including a one-way hash of the derived key in a final message.

12.9 Definition An authenticated key establishment protocol is a key establishment protocol
(Definition 12.2) which provides key authentication (Definition 12.6).
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§12.2 Classification and framework 493

12.10 Remark (combining entity authentication and key establishment) In a key establishment
protocol which involves entity authentication, it is critical that the protocol be constructed
to guarantee that the party whose identity is thereby corroborated is the same party with
which the key is established. When this is not so, an adversary may enlist the aid of an
unsuspecting authorized party to carry out the authentication aspect, and then impersonate
that party in key establishment (and subsequent communications).

Identity-based and non-interactive protocols

Motivation for identity-based systems is provided in §13.4.3.

12.11 Definition A key establishment protocol is said to be identity-based if identity informa-
tion (e.g., name and address, or an identifying index) of the party involved is used as the
party’s public key. A related idea (see §13.4.4) involves use of identity information as an
input to the function which determines the established key.

Identity-based authentication protocols may be defined similarly.

12.12 Definition A two-party key establishment protocol is said to be message-independent if
the messages sent by each party are independent of any per-session time-variant data (dy-
namic data) received from other parties.

Message-independent protocols which furthermore involve no dynamic data in the key
computation are simply key pre-distributionschemes (Definition 12.5). In general, dynamic
data (e.g., that received from another party) is involved in the key computation, even in
message-independent protocols.

12.13 Remark (message-independent vs. non-interactive) Message-independent protocols incl-
ude non-interactive protocols (zero-pass and one-pass protocols, i.e., those involving zero
or one message but no reply), as well as some two-pass protocols. Regarding inter-party
communications, some specification (explicit or otherwise) of the parties involved in key
establishment is necessary even in zero-pass protocols. More subtlely, in protocols involv-
ing t users identified by a vector (i1, . . . , it), the ordering of indices may determine distinct
keys. In other protocols (e.g., basic Diffie-Hellman key agreement or Protocol 12.53), the
cryptographic data in one party’s message is independent of both dynamic data in other par-
ties’ messages and of all party-specific data including public keys and identity information.

12.2.2 Objectives and properties

Cryptographic protocols involving message exchanges require precise definition of both the
messages to be exchanged and the actions to be taken by each party. The following types
of protocols may be distinguished, based on objectives as indicated:

1. authentication protocol – to provide to one party some degree of assurance regarding
the identity of another with which it is purportedly communicating;

2. key establishment protocol – to establish a shared secret;
3. authenticated key establishment protocol – to establish a shared secret with a party

whose identity has been (or can be) corroborated.
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494 Ch. 12 Key Establishment Protocols

Motivation for use of session keys

Key establishment protocols result in shared secrets which are typically called, or used to
derive, session keys. Ideally, a session key is an ephemeral secret, i.e., one whose use is
restricted to a short time period such as a single telecommunications connection (or ses-
sion), after which all trace of it is eliminated. Motivation for ephemeral keys includes the
following:

1. to limit available ciphertext (under a fixed key) for cryptanalytic attack;
2. to limit exposure, with respect to both time period and quantity of data, in the event

of (session) key compromise;
3. to avoid long-term storage of a large number of distinct secret keys (in the case where

one terminal communicates with a large number of others), by creating keys only
when actually required;

4. to create independence across communications sessions or applications.

It is also desirable in practice to avoid the requirement of maintaining state information
across sessions.

Types of assurances and distinguishing protocol characteristics

When designing or selecting a key establishment technique for use, it is important to con-
sider what assurances and properties an intended application requires. Distinction should
be made between functionality provided to a user, and technical characteristics which dis-
tinguish mechanisms at the implementation level. (The latter are typically of little interest
to the user, aside from cost and performance implications.) Characteristics which differen-
tiate key establishment techniques include:

1. nature of the authentication. Any combination of the following may be provided:
entity authentication, key authentication, and key confirmation.

2. reciprocity of authentication. When provided, each of entity authentication, key au-
thentication, and key confirmation may be unilateral or mutual (provided to one or
both parties, respectively).

3. key freshness. A key is fresh (from the viewpoint of one party) if it can be guaranteed
to be new, as opposed to possibly an old key being reused through actions of either
an adversary or authorized party. This is related to key control (below).

4. key control. In some protocols (key transport), one party chooses a key value. In oth-
ers (key agreement), the key is derived from joint information, and it may be desirable
that neither party be able to control or predict the value of the key.

5. efficiency. Considerations include:

(a) number of message exchanges (passes) required between parties;
(b) bandwidth required by messages (total number of bits transmitted);
(c) complexity of computations by each party (as it affects execution time); and
(d) possibility of precomputation to reduce on-line computational complexity.

6. third party requirements. Considerations include (see §13.2.4):

(a) requirement of an on-line (real-time), off-line, or no third party;
(b) degree of trust required in a third party (e.g., trusted to certify public keys vs.

trusted not to disclose long-term secret keys).

7. type of certificate used, if any. More generally, one may consider the manner by
which initial keying material is distributed, which may be related to third party re-
quirements. (This is often not of direct concern to a user, being an implementation
detail typically providing no additional functionality.)
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§12.2 Classification and framework 495

8. non-repudiation. A protocol may provide some type of receipt that keying material
has been exchanged.

12.14 Remark (efficiency vs. security) The efficiency and security of cryptographic techniques
are often related. For example, in some protocols a basic step is executed repeatedly, and
security increases with the number of repetitions; in this case, the level of security attainable
given a fixed amount of time depends on the efficiency of the basic step.

In the description of protocol messages, it is assumed that when the claimed source
identity or source network address of a message is not explicitly included as a message field,
these are known by context or otherwise available to the recipient, possibly by (unspecified)
additional cleartext fields.

12.2.3 Assumptions and adversaries in key establishment
protocols

To clarify the threats protocols may be subject to, and to motivate the need for specific
protocol characteristics, one requires (as a minimum) an informal model for key establish-
ment protocols, including an understanding of underlying assumptions. Attention here is
restricted to two-party protocols, although the definitions and models may be generalized.

Adversaries in key establishment protocols

Communicating parties or entities in key establishment protocols are formally called prin-
cipals, and assumed to have unique names. In addition to legitimate parties, the presence of
an unauthorized “third” party is hypothesized, which is given many names under various
circumstances, including: adversary, intruder, opponent, enemy, attacker, eavesdropper,
and impersonator.

When examining the security of protocols, it is assumed that the underlying crypto-
graphic mechanisms used, such as encryption algorithms and digital signatures schemes,
are secure. If otherwise, then there is no hope of a secure protocol. An adversary is hypoth-
esized to be not a cryptanalyst attacking the underlying mechanisms directly, but rather one
attempting to subvert the protocol objectives by defeating the manner in which such mech-
anisms are combined, i.e., attacking the protocol itself.

12.15 Definition A passive attack involves an adversary who attempts to defeat a cryptographic
technique by simply recording data and thereafter analyzing it (e.g., in key establishment, to
determine the session key). An active attack involves an adversary who modifies or injects
messages.

It is typically assumed that protocol messages are transmitted over unprotected (open)
networks, modeled by an adversary able to completely control the data therein, with the
ability to record, alter, delete, insert, redirect, reorder, and reuse past or current messages,
and inject new messages. To emphasize this, legitimate parties are modeled as receiv-
ing messages exclusively via intervening adversaries (on every communication path, or on
some subset of t of n paths), which have the option of either relaying messages unaltered to
the intended recipients, or carrying out (with no noticeable delay) any of the above actions.
An adversary may also be assumed capable of engaging unsuspecting authorized parties by
initiating new protocol executions.

An adversary in a key establishment protocol may pursue many strategies, including
attempting to:
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496 Ch. 12 Key Establishment Protocols

1. deduce a session key using information gained by eavesdropping;
2. participate covertly in a protocol initiated by one party with another, and influence it,

e.g., by altering messages so as to be able to deduce the key;
3. initiate one or more protocol executions (possibly simultaneously), and combine (in-

terleave) messages from one with another, so as to masquerade as some party or carry
out one of the above attacks;

4. without being able to deduce the session key itself, deceive a legitimate party regard-
ing the identity of the party with which it shares a key. A protocol susceptible to such
an attack is not resilient (see Definition 12.82).

In unauthenticated key establishment, impersonation is (by definition) possible. In entity
authentication, where there is no session key to attack, an adversary’s objective is to ar-
range that one party receives messages which satisfy that party that the protocol has been
run successfully with a party other than the adversary.

Distinction is sometimes made between adversaries based on the type of information
available to them. An outsider is an adversary with no special knowledge beyond that gen-
erally available, e.g., by eavesdropping on protocol messages over open channels. An in-
sider is an adversary with access to additional information (e.g., session keys or secret par-
tial information), obtained by some privileged means (e.g., physical access to private com-
puter resources, conspiracy, etc.). A one-time insider obtains such information at one point
in time for use at a subsequent time; a permanent insider has continual access to privileged
information.

Perfect forward secrecy and known-key attacks

In analyzing key establishment protocols, the potential impact of compromise of various
types of keying material should be considered, even if such compromise is not normally
expected. In particular, the effect of the following is often considered:

1. compromise of long-term secret (symmetric or asymmetric) keys, if any;
2. compromise of past session keys.

12.16 Definition A protocol is said to have perfect forward secrecy if compromise of long-term
keys does not compromise past session keys.

The idea of perfect forward secrecy (sometimes called break-backward protection) is
that previous traffic is locked securely in the past. It may be provided by generating session
keys by Diffie-Hellman key agreement (e.g., Protocol 12.57), wherein the Diffie-Hellman
exponentials are based on short-term keys. If long-term secret keys are compromised, fu-
ture sessions are nonetheless subject to impersonation by an active adversary.

12.17 Definition A protocol is said to be vulnerable to a known-key attack if compromise of
past session keys allows either a passive adversary to compromise future session keys, or
impersonation by an active adversary in the future.

Known-key attacks on key establishment protocols are analogous to known-plaintext
attacks on encryption algorithms. One motivation for their consideration is that in some
environments (e.g., due to implementation and engineering decisions), the probability of
compromise of session keys may be greater than that of long-term keys. A second motiva-
tion is that when using cryptographic techniques of only moderate strength, the possibility
exists that over time extensive cryptanalytic effort may uncover past session keys. Finally,
in some systems, past session keys may be deliberately uncovered for various reasons (e.g.,

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§12.3 Key transport based on symmetric encryption 497

after authentication, to possibly detect use of the authentication channel as a covert or hid-
den channel).

12.3 Key transport based on symmetric encryption

This section presents a selection of key establishment protocols based on key transport (i.e.,
transfer of a specific key chosen a priori by one party) using symmetric encryption. Re-
lated techniques involving non-reversible functions are also presented. Discussion is sub-
divided into protocols with and without the use of a trusted server, as summarized in Ta-
ble 12.2. Some of these use time-variant parameters (timestamps, sequence numbers, or
random numbers) or nonces as discussed in §10.3.1.

→ Properties server type use of number of
↓ Protocol timestamps messages

point-to-point key update none optional 1-3
Shamir’s no-key protocol none no 3
Kerberos KDC yes 4
Needham-Schroeder shared-key KDC no 5
Otway-Rees KDC no 4
Protocol 13.12 KTC no 3

Table 12.2: Key transport protocols based on symmetric encryption.

12.3.1 Symmetric key transport and derivation without a server

Server-less key transport based on symmetric techniques may either require that the two
parties in the protocol initially share a long-term pairwise secret or not, respectively illus-
trated below by point-to-point key update techniques and Shamir’s no-key algorithm. Other
illustrative techniques are also given.

(i) Point-to-point key update using symmetric encryption

Point-to-point key update techniques based on symmetric encryption make use of a long-
term symmetric keyK shared a priori by two partiesA andB. This key, initially distributed
over a secure channel or resulting from a key pre-distribution scheme (e.g., see Note 12.48),
is used repeatedly to establish new session keysW . Representative examples of point-to-
point key transport techniques follow.

Notation: rA, tA, and nA, respectively, denote a random number, timestamp, and se-
quence number generated byA (see §10.3.1). E denotes a symmetric encryption algorithm
(see Remark 12.19). Optional message fields are denoted by an asterisk (*).

1. key transport with one pass:

A→ B : EK(rA) (1)

The session key used isW = rA, and both A and B obtain implicit key authentica-
tion. Additional optional fields which might be transferred in the encrypted portion
include: a timestamp or sequence number to provide a freshness guarantee toB (see
Remark 12.18); a field containing redundancy, to provide explicit key authentication
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498 Ch. 12 Key Establishment Protocols

to B or facilitate message modification detection (see Remark 12.19); and a target
identifier to prevent undetectable message replay back on A immediately. Thus:

A→ B : EK(rA, tA∗, B∗) (1′)

If it is desired that both parties contribute to the session key,B may sendA an analo-
gous message, with the session key computed as f(rA, rB). Choosing f to be a one-
way function precludes control of the final key value by either party, or an adversary
who acquires one of rA, rB .

2. key transport with challenge-response:

A← B : nB (1)
A→ B : EK(rA, nB, B∗) (2)

If a freshness guarantee is desired but reliance on timestamps is not, a random number
or sequence number, denoted nB here, may be used to replace the timestamp in the
one-pass technique; the cost is an additional message. The session key is againW =
rA.
If it is required that the session keyW be a function of inputs from both parties, A
may insert a nonce nA preceding nB in (2), and a third message may be added as
below. (Here rA, rB are random numbers serving as keying material, while nA, nB
are nonces for freshness.)

A← B : nB (1)
A→ B : EK(rA, nA, nB, B∗) (2)
A← B : EK(rB , nB, nA, A∗) (3)

12.18 Remark (key update vulnerabilities) The key update techniques above do not offer perfect
forward secrecy, and fail completely if the long-term keyK is compromised. For this rea-
son they may be inappropriate for many applications. The one-pass protocol is also subject
to replay unless a timestamp is used.

12.19 Remark (integrity guarantees within encryption) Many authentication protocols which
employ encryption, including the above key update protocols and Protocols 12.24, 12.26,
and 12.29, require for security reasons that the encryption function has a built-in data in-
tegrity mechanism (see Figure 9.8(b) for an example, and Definition §9.75) to detect mes-
sage modification.

(ii) Point-to-point key update by key derivation and non-reversible functions

Key update may be achieved by key transport as above, or by key derivation wherein the
derived session key is based on per-session random input provided by one party. In this
case, there is also a single message:

A→ B : rA (1)

The session key is computed asW = EK(rA). The technique provides to both A and B
implicit key authentication. It is, however, susceptible to known-key attacks; Remark 12.18
similarly applies. The random number rA here may be replaced by other time-variant pa-
rameters; for example, a timestamp tA validated by the recipient by comparison to its local
clock provides an implicit key freshness property, provided the long-term key is not com-
promised.
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§12.3 Key transport based on symmetric encryption 499

Here A could control the value of W , forcing it to be x by choosing rA = DK(x).
Since the technique itself does not require decryption,E may be replaced by an appropriate
keyed pseudorandom functionhK , in which case the session key may be computed asW =
hK(rA), with rA a time-variant parameter as noted above.

In the other techniques of §12.3.1(i) employing an encryption function E, the confi-
dentiality itself of the encrypted fields other than the session keyW is not critical. A key
derivation protocol which entirely avoids the use of an encryption function may offer po-
tential advantages with respect to export restrictions. Protocol 12.20 is such a technique,
which also provides authentication guarantees as stated. It uses two distinct functions h
and h′ (generating outputs of different bitlengths), respectively, for message authentication
and key derivation.

12.20 Protocol Authenticated Key Exchange Protocol 2 (AKEP2)

SUMMARY: A and B exchange 3 messages to derive a session keyW .
RESULT: mutual entity authentication, and implicit key authentication ofW .

1. Setup: A andB share long-term symmetric keysK,K ′ (these should differ but need
not be independent). hK is a MAC (keyed hash function) used for entity authenti-
cation. h′K′ is a pseudorandom permutation or keyed one-way function used for key
derivation.

2. Protocol messages. Define T = (B,A, rA, rB).

A→ B : rA (1)
A← B : T, hK(T ) (2)
A→ B : (A, rB), hK(A, rB) (3)
W = h′K′(rB)

3. Protocol actions. Perform the following steps for each shared key required.

(a) A selects and sends to B a random number rA.
(b) B selects a random number rB and sends toA the values (B,A, rA, rB), along

with a MAC over these quantities generated using h with keyK.
(c) Upon receiving message (2),A checks the identities are proper, that the rA re-

ceived matches that in (1), and verifies the MAC.
(d) A then sends to B the values (A, rB), along with a MAC thereon.
(e) Upon receiving (3), B verifies that the MAC is correct, and that the received

value rB matches that sent earlier.
(f) Both A and B compute the session key asW = h′K′(rB).

12.21 Note (AKEP1 variant of Protocol 12.20) The following modification of AKEP2 results in
AKEP1 (Authenticated Key Exchange Protocol 1). B explicitly generates a random ses-
sion keyW and probabilistically encrypts it using h′ underK ′ and random number r. The
quantity (r,W⊕h′K′(r)) is now included as a final extra field within T and hK(T ) in (2),
and from which A may recoverW . As an optimization, r = rB .

(iii) Key transport without a priori shared keys

Shamir’s no-key algorithm (Protocol 12.22) is a key transport protocol which, using only
symmetric techniques (although involving modular exponentiation), allows key establish-
ment over an open channel without requiring either shared or public keys. Each party has
only its own local symmetric key. The protocol provides protection from passive adver-
saries only; it does not provide authentication. It thus solves the same problem as basic
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Diffie-Hellman (Protocol 12.47) – two parties sharing no a priori keying material end up
with a shared secret key, secure against passive adversaries – although differences include
that it uses three messages rather than two, and provides key transport.

12.22 Protocol Shamir’s no-key protocol

SUMMARY: users A and B exchange 3 messages over a public channel.
RESULT: secretK is transferred with privacy (but no authentication) from A to B.

1. One-time setup (definition and publication of system parameters).

(a) Select and publish for common use a prime p chosen such that computation of
discrete logarithms modulo p is infeasible (see Chapter 3).

(b) A andB choose respective secret random numbers a, b, with 1 ≤ a, b ≤ p− 2,
each coprime to p− 1. They respectively compute a−1 and b−1 mod p− 1.

2. Protocol messages.

A→ B : Ka mod p (1)
A← B : (Ka)b mod p (2)

A→ B : (Kab)a
−1
mod p (3)

3. Protocol actions. Perform the following steps for each shared key required.

(a) A chooses a random key K for transport to B, 1 ≤ K ≤ p − 1. A computes
Ka mod p and sends B message (1).

(b) B exponentiates (mod p) the received value by b, and sends A message (2).
(c) A exponentiates (mod p) the received value by a−1 mod p− 1, effectively “un-

doing” its previous exponentiation and yieldingKb mod p. A sends the result
to B as message (3).

(d) B exponentiates (mod p) the received value by b−1 mod p− 1, yielding the
newly shared keyK mod p.

Use of ElGamal encryption for key transport (as per §12.5.1) with an uncertified public
key sent in a first message (which would by definition be safe from passive attack) achieves
in two passes the same goals as the above three-pass algorithm. In this case, the key is
transported from the recipient of the first message to the originator.

12.23 Remark (choice of cipher in Protocol 12.22) While it might appear that any commuta-
tive cipher (i.e., cipher wherein the order of encryption and decryption is interchangeable)
would suffice in place of modular exponentiation in Protocol 12.22, caution is advised. For
example, use of the Vernam cipher (§1.5.4) would be totally insecure here, as the XOR of
the three exchanged messages would equal the key itself.

12.3.2 Kerberos and related server-based protocols

The key transport protocols discussed in this section are based on symmetric encryption,
and involve two communicating parties, A and B, and a trusted server with which they
share long-term pairwise secret keys a priori. In such protocols, the server either plays the
role of a key distribution center (KDC) and itself supplies the session key, or serves as a
key translation center (KTC), and makes a key chosen by one party available to the other,
by re-encrypting (translating) it under a key shared with the latter. KDCs and KTCs are
discussed further in §13.2.3.
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(i) Kerberos authentication protocol

Kerberos is the name given to all of the following: the distributed authentication service
originating from MIT’s Project Athena, which includes specifications for data integrity and
encryption; the software which implements it, and the processes executing such software;
and the specific authentication protocol used therein. Focus here, and use of the term “Ker-
beros”, is restricted to the protocol itself, which supports both entity authentication and key
establishment using symmetric techniques and a third party.

The basic Kerberos protocol involvesA (the client), B (the server and verifier), and a
trusted serverT (the Kerberos authentication server). At the outsetA andB share no secret,
while T shares a secret with each (e.g., a user password, transformed into a cryptographic
key by an appropriate function). The primary objective is for B to verify A’s identity; the
establishment of a shared key is a side effect. Options include a final message providing
mutual entity authentication and establishment of an additional secret shared by A and B
(a subsession key not chosen by T ).

The protocol proceeds as follows. A requests from T appropriate credentials (data
items) to allow it to authenticate itself to B. T plays the role of a KDC, returning to A
a session key encrypted for A and a ticket encrypted for B. The ticket, which A forwards
on to B, contains the session key and A’s identity; this allows authentication of A to B
when accompanied by an appropriate message (the authenticator) created byA containing
a timestamp recently encrypted under that session key.

12.24 Protocol Basic Kerberos authentication protocol (simplified)1

SUMMARY: A interacts with trusted server T and party B.
RESULT: entity authentication of A to B (optionally mutual), with key establishment.

1. Notation. Optional items are denoted by an asterisk (*).
E is a symmetric encryption algorithm (see Remark 12.19).
NA is a nonce chosen by A; TA is a timestamp from A’s local clock.
k is the session-key chosen by T , to be shared by A and B.
L indicates a validity period (called the “lifetime”).

2. One-time setup. A and T share a key KAT ; similarly, B and T shareKBT . Define

ticketB
def
= EKBT (k,A, L); authenticator

def
= Ek(A, TA, A

∗
subkey).

3. Protocol messages.

A→ T : A,B,NA (1)
A← T : ticketB, EKAT (k,NA, L,B) (2)
A→ B : ticketB, authenticator (3)
A← B : Ek(TA, B∗subkey) (4)

4. Protocol actions. AlgorithmE includes a built-in integrity mechanism, and protocol
failure results if any decryption yields an integrity check failure.

(a) A generates a nonceNA and sends to T message (1).
(b) T generates a new session key k, and defines a validity period (lifetime L) for

the ticket, consisting of an ending time and optional starting time. T encrypts k,
the received nonce, lifetime, and received identifier (B) using A’s key. T also
creates a ticket secured usingB’s key containing k, received identifier (A), and
lifetime. T sends to A message (2).

1The basic Kerberos (version 5) protocol between client and authentication server is given, with messages
simplified (some non-cryptographic fields omitted) to allow focus on cryptographic aspects.
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(c) A decrypts the non-ticket part of message (2) using KAT to recover: k, NA,
lifetime L, and the identifier of the party for which the ticket was actually cre-
ated. A verifies that this identifier and NA match those sent in message (1),
and saves L for reference. A takes its own identifier and fresh timestamp TA,
optionally generates a secret Asubkey, and encrypts these using k to form the
authenticator. A sends to B message (3).

(d) B receives message (3), decrypts the ticket usingKBT yielding k to allow de-
cryption of the authenticator. B checks that:

i. the identifier fields (A) in the ticket and authenticator match;
ii. the timestamp TA in the authenticator is valid (see §10.3.1); and

iii. B’s local time is within the lifetime L specified in the ticket.

If all checks pass,B declares authentication ofA successful, and savesAsubkey
(if present) as required.

(e) (Optionally for mutual entity authentication:) B constructs and sends toAmes-
sage (4) containing A’s timestamp from the authenticator (specifically exclud-
ing the identifierA, to distinguish it from the authenticator), encrypted using k.
B optionally includes a subkey to allow negotiation of a subsession key.

(f) (Optionally for mutual entity authentication:) A decrypts message (4). If the
timestamp within matches that sent in message (3), A declares authentication
of B successful and saves Bsubkey (if present) as required.

12.25 Note (security and options in Kerberos protocol)

(i) Since timestamps are used, the hosts on which this protocol runs must provide both
secure and synchronized clocks (see §10.3.1).

(ii) If, as is the case in actual implementations, the initial shared keys are password-deriv-
ed, then the protocol is no more secure than the secrecy of such passwords or their
resistance to password-guessing attacks.

(iii) Optional parametersAsubkey andBsubkey allow transfer of a key (other than k) from
A to B or vice-versa, or the computation of a combined key using some function
f(Asubkey, Bsubkey).

(iv) The lifetime within the ticket is intended to allowA to re-use the ticket over a limited
time period for multiple authentications to B without additional interaction with T ,
thus eliminating messages (1) and (2). For each such re-use,A creates a new authen-
ticator with a fresh timestamp and the same session key k; the optional subkey field
is of greater use in this case.

(ii) Needham-Schroeder shared-key protocol

The Needham-Schroeder shared-key protocol is important primarily for historical reasons.
It is the basis for many of the server-based authentication and key distribution protocols pro-
posed since 1978, including Kerberos and Otway-Rees. It is an example of a protocol inde-
pendent of timestamps, providing both entity authentication assurances and key establish-
ment with key confirmation. However, it is no longer recommended (see Remark 12.28).
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12.26 Protocol Needham-Schroeder shared-key protocol

SUMMARY: A interacts with trusted server T and party B.
RESULT: entity authentication (A with B); key establishment with key confirmation.

1. Notation. E is a symmetric encryption algorithm (see Remark 12.19).
NA andNB are nonces chosen by A and B, respectively.
k is a session key chosen by the trusted server T for A and B to share.

2. One-time setup. A and T share a symmetric keyKAT ; B and T shareKBT .
3. Protocol messages.

A→ T : A,B,NA (1)
A← T : EKAT (NA, B, k, EKBT (k,A)) (2)
A→ B : EKBT (k,A) (3)
A← B : Ek(NB) (4)
A→ B : Ek(NB − 1) (5)

4. Protocol actions. Aside from verification of nonces, actions are essentially analogous
to those in Kerberos (Protocol 12.24), and are not detailed here.

12.27 Note (functionality and options in Needham-Schroeder shared-key protocol)

(i) The protocol provides A and B with a shared key k with key authentication (due to
the trusted server).

(ii) Messages (4) and (5) provide entity authentication of A to B; entity authentication
of B to A can be obtained providedA can carry out some redundancy check on NB
upon decrypting message (4).

(iii) If it is acceptable forA to re-use a key kwithB,Amay securely cache the data sent in
message (3) along with k. Upon subsequent re-use, messages (1) and (2) may then be
omitted, but now to prevent replay of old messages (4), an encrypted nonceEk(NA

′)
should be appended to message (3), and message (4) should be replaced byEk(NA

′−
1, NB) allowing A to verify B’s current knowledge of k (thereby providing entity
authentication).

12.28 Remark (Needham-Schroeder weakness vs. Kerberos) The essential differences between
Protocol 12.26 and Kerberos (Protocol 12.24) are as follows: the Kerberos lifetime param-
eter is not present; the data of message (3), which corresponds to the Kerberos ticket, is un-
necessarily double-encrypted in message (2) here; and authentication here employs nonces
rather than timestamps. A weakness of the Needham-Schroeder protocol is that since B
has no way of knowing if the key k is fresh, should a session key k ever be compromised,
any party knowing it may both resend message (3) and compute a correct message (5) to
impersonate A to B. This situation is ameliorated in Kerberos by the lifetime parameter
which limits exposure to a fixed time interval.

(iii) Otway-Rees protocol

The Otway-Rees protocol is a server-based protocol providing authenticated key transport
(with key authentication and key freshness assurances) in only 4 messages – the same as
Kerberos, but here without the requirement of timestamps. It does not, however, provide
entity authentication or key confirmation.
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12.29 Protocol Otway-Rees protocol

SUMMARY: B interacts with trusted server T and party A.
RESULT: establishment of fresh shared secretK between A and B.

1. Notation. E is a symmetric encryption algorithm (see Remark 12.19). k is a session
key T generates for A and B to share. NA and NB are nonces chosen by A and B,
respectively, to allow verification of key freshness (thereby detecting replay). M is
a second nonce chosen by A which serves as a transaction identifier.

2. One-time setup. T shares symmetric keysKAT andKBT with A, B, respectively.
3. Protocol messages.

A→ B : M,A,B,EKAT (NA,M,A,B) (1)
B → T : M,A,B,EKAT (NA,M,A,B), EKBT (NB,M,A,B) (2)
B ← T : EKAT (NA, k), EKBT (NB , k) (3)
A← B : EKAT (NA, k) (4)

4. Protocol actions. Perform the following steps each time a shared key is required.

(a) A encrypts data for the server containing two nonces,NA andM , and the iden-
tities of itself and the party B to whom it wishes the server to distribute a key.
A sends this and some plaintext to B in message (1).

(b) B creates its own nonce NB and an analogous encrypted message (with the
sameM ), and sends this along with A’s message to T in message (2).

(c) T uses the cleartext identifiers in message (2) to retrieveKAT and KBT , then
verifies the cleartext (M A, B) matches that recovered upon decrypting both
parts of message (2). (VerifyingM in particular confirms the encrypted parts
are linked.) If so, T inserts a new key k and the respective nonces into distinct
messages encrypted for A and B, and sends both to B in message (3).

(d) B decrypts the second part of message (3), checksNB matches that sent in mes-
sage (2), and if so passes the first part on to A in message (4).

(e) A decrypts message (4) and checksNA matches that sent in message (1).

If all checks pass, each of A and B are assured that k is fresh (due to their respective
nonces), and trust that the other party T shared k with is the party bound to their nonce in
message (2). A knows thatB is active as verification of message (4) impliesB sent message
(2) recently; B however has no assurance that A is active until subsequent use of k by A,
since B cannot determine if message (1) is fresh.

12.30 Remark (nonces in Otway-Rees protocol) The use of two nonces generated byA is redun-
dant (NA could be eliminated in messages (1) and (2), and replaced byM in (3) and (4)),
but nonetheless allowsM to serve solely as an administrative transaction identifier, while
keeping the format of the encrypted messages of each party identical. (The latter is gener-
ally considered desirable from an implementation viewpoint, but dubious from a security
viewpoint.)

12.31 Remark (extension of Otway-Rees protocol) Protocol 12.29 may be extended to provide
both key confirmation and entity authentication in 5 messages. Message (4) could be aug-
mented to both demonstrate B’s timely knowledge of k and transfer a nonce to A (e.g.,
appending Ek(NA, NB)), with a new fifth message (A → B : Ek(NB)) providing B re-
ciprocal assurances.
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12.4 Key agreement based on symmetric techniques

This section presents ideas related to key agreement based on symmetric techniques. It also
presents a key pre-distribution system which is in some ways a symmetric-key analogue to
Diffie-Hellman key agreement with fixed exponentials (Note 12.48).

12.32 Definition A key distribution system (KDS) is a method whereby, during an initialization
stage, a trusted server generates and distributes secret data values (pieces) to users, such
that any pair of users may subsequently compute a shared key unknown to all others (aside
from the server).

For fixed pairwise keys, a KDS is a key pre-distribution scheme. A trivial KDS is as
follows: the trusted server chooses distinct keys for each pair among the n users, and by
some secure means initially distributes to each user its n − 1 keys appropriately labeled.
This provides unconditional security (perfect security in the information-theoretic sense);
an outside adversary can do no better than guess the key. However, due to the large amount
of storage required, alternate methods are sought, at the price of losing unconditional secu-
rity against arbitrarily large groups of colluding users.

12.33 Definition A KDS is said to be j-secure if, given a specified pair of users, any coalition of
j or fewer users (disjoint from the two), pooling their pieces, can do no better at computing
the key shared by the two than a party which guesses the key without any pieces whatsoever.

A j-secure KDS is thus unconditionally secure against coalitions of size j or smaller.

12.34 Fact (Blom’s KDS bound) In any j-secure KDS providingm-bit pairwise session keys,
the secret data stored by each user must be at leastm · (j + 1) bits.

The trivial KDS described above is optimal with respect to the number of secret key
bits stored, assuming collusion by all parties other than the two directly involved. This cor-
responds to meeting the lower bound of Fact 12.34 for j = n− 2.

Blom’s symmetric key pre-distribution system

Blom’s scheme (Mechanism 12.35) is a KDS which can be used to meet the bound of
Fact 12.34 for values j < n− 2. It is non-interactive; each party requires only an index i,
1 ≤ i ≤ n, which uniquely identifies the party with which it is to form a joint key (the sch-
eme is identity-based in this regard). Each user is assigned a secret vector of initial keying
material (base key) from which it is then able to compute a pairwise secret (derived key)
with each other user.

As outlined in Remark 12.37, the scheme may be engineered to provide unconditional
security against coalitions of a specified maximum size. The initial keying material as-
signed to each user (a row of S, corresponding to k keys) allows computation of a larger
number of derived keys (a row of K, providing n keys), one per each other user. Storage
savings results from choosing k less than n. The derived keys of different user pairs, how-
ever, are not statistically independent.
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12.35 Mechanism Blom’s symmetric key pre-distribution system

SUMMARY: each of n users is given initial secret keying material and public data.
RESULT: each pair of users Ui, Uj may compute anm-bit pairwise secret keyKi,j .

1. A k × n generator matrix G of an (n, k)MDS code over a finite field Fq of order q
is made known to all n system users (see Note 12.36).

2. A trusted party T creates a random secret k × k symmetric matrixD over Fq .
3. T gives to each user Ui the secret key Si, defined as row i of the n × k matrix S =
(DG)T . (Si is a k-tuple over Fq of k · lg(q) bits, allowing Ui to compute any entry
in row i of (DG)TG.)

4. Users Ui and Uj compute the common secretKi,j = Kj,i of bitlengthm = lg(q) as
follows. Using Si and column j ofG, Ui computes the (i, j) entry of the n×n sym-
metric matrixK = (DG)TG. Using Sj and column i of G, Uj similarly computes
the (j, i) entry (which is equal to the (i, j) entry sinceK is symmetric).

12.36 Note (background on MDS codes) The motivation for Mechanism 12.35 arises from well-
known concepts in linear error-correcting codes, summarized here. Let G = [IkA] be a
k×nmatrix where each row is an n-tuple over Fq (for q a prime or prime power). Ik is the
k × k identity matrix. The set of n-tuples obtained by taking all linear combinations (over
Fq) of rows of G is the linear code C. Each of these qk n-tuples is a codeword, and C =
{c : c = mG,m = (m1m2 . . . mk),mi ∈ Fq}. G is a generator matrix for the linear
(n, k) code C. The distance between two codewords c, c′ is the number of components
they differ in; the distance d of the code is the minimum such distance over all pairs of
distinct codewords. A code of distance d can correct e = b(d− 1)/2c component errors in
a codeword, and for linear codes d ≤ n− k+1 (the Singleton bound). Codes meeting this
bound with equality (d = n − k + 1) have the largest possible distance for fixed n and k,
and are called maximum distance separable (MDS) codes.

12.37 Remark (choice of k in Blom’s scheme) The condition d = n−k+1 defining MDS codes
can be shown equivalent to the condition that every set of k columns ofG is linearly inde-
pendent. From this, two facts follow about codewords of MDS codes: (i) any k components
uniquely define a codeword; and (ii) any j ≤ k − 1 components provide no information
about other components. For Mechanism 12.35, the choice of k is governed by the fact
that if k or more users conspire, they are able to recover the secret keys of all other users.
(k conspirators may compute k rows ofK, or equivalently k columns, corresponding to k
components in each row. Each row is a codeword in the MDS code generated by G, and
corresponds to the key of another user, and by the above remark k components thus define
all remaining components of that row.) However, if fewer than k users conspire, they obtain
no information whatsoever about the keys of any other user (by similar reasoning). Thus
Blom’s scheme is j-secure for j ≤ k− 1, and relative to Fact 12.34, is optimal with respect
to the amount of initial keying material required.

12.5 Key transport based on public-key encryption

Key transport based on public-key encryption involves one party choosing a symmetric key,
and transferring it to a second, using that party’s encryption public key. This provides key
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authentication to the originator (only the intended recipient has the private key allowing de-
cryption), but the originator itself obtains neither entity authentication nor key confirmation.
The second party receives no source authentication. Such additional assurances may be ob-
tained through use of further techniques including: additional messages (§12.5.1); digital
signatures (§12.5.2); and symmetric encryption in addition to signatures (§12.5.3).

Authentication assurances can be provided with or without the use of digital signatures,
as follows:

1. entity authentication via public-key decryption (§12.5.1). The intended recipient au-
thenticates itself by returning some time-variant value which it alone may produce or
recover. This may allow authentication of both the entity and a transferred key.

2. data origin authentication via digital signatures (§12.5.2). Public-key encryption is
combined with a digital signature, providing key transport with source identity assur-
ances.

The distinction between entity authentication and data origin authentication is that the for-
mer provides a timeliness assurance, whereas the latter need not. Table 12.3 summarizes
the protocols presented.

→ Properties signatures entity number of
↓ Protocol required‡ authentication messages

basic PK encryption (1-pass) no no 1
Needham-Schroeder PK no mutual 3
encrypting signed keys yes data origin only† 1
separate signing, encrypting yes data origin only† 1
signing encrypted keys yes data origin only† 1
X.509 (2-pass) – timestamps yes mutual 2
X.509 (3-pass) – random #’s yes mutual 3
Beller-Yacobi (4-pass) yes mutual 4
Beller-Yacobi (2-pass) yes unilateral 2

Table 12.3: Selected key transport protocols based on public-key encryption.
†Unilateral entity authentication may be achieved if timestamps are included.
‡Schemes using public keys transported by certificates require signatures for verification thereof,
but signatures are not required within protocol messages.

12.5.1 Key transport using PK encryption without signatures

One-pass key transport by public-key encryption

One-pass protocols are appropriate for one-way communications and store-and-forward ap-
plications such as electronic mail and fax. Basic key transport using public-key encryption
can be achieved in a one-pass protocol, assuming the originator A possesses a priori an
authentic copy of the encryption public key of the intended recipient B. Using B’s pub-
lic encryption key, A encrypts a randomly generated key k, and sends the result PB(k) to
B. Public-key encryption schemes PB of practical interest here include RSA encryption,
Rabin encryption, and ElGamal encryption (see Chapter 8).

The originator A obtains no entity authentication of the intended recipient B (and in-
deed, does not know if B even receives the message), but is assured of implicit key au-
thentication – no one aside from B could possibly recover the key. On the other hand,
B has no assurances regarding the source of the key, which remains true even in the case
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A → B : PB(k,A). A timeliness guarantee may be provided using timestamps, for ex-
ample, A → B : PB(k, TA). This is necessary if security against known-key attacks is
required, as this technique is otherwise vulnerable to message replay (cf. Remark 12.18).

Maintaining the restriction of using public-key encryption alone (i.e., without signa-
tures), assurances in addition to unilateral key authentication, namely, mutual entity au-
thentication, and mutual key authentication, may be obtained through additional messages
as illustrated by Protocol 12.38 below.

Needham-Schroeder public-key protocol

The Needham-Schroeder public-key protocol provides mutual entity authentication and
mutual key transport (A and B each transfer a symmetric key to the other). The trans-
ported keys may serve both as nonces for entity authentication and secret keys for further
use. Combination of the resulting shared keys allows computation of a joint key to which
both parties contribute.

12.38 Protocol Needham-Schroeder public-key protocol

SUMMARY: A and B exchange 3 messages.
RESULT: entity authentication, key authentication, and key transport (all mutual).

1. Notation. PX(Y ) denotes public-key encryption (e.g., RSA) of data Y using party
X’s public key; PX(Y1, Y2) denotes the encryption of the concatenation of Y1 and
Y2. k1, k2 are secret symmetric session keys chosen by A, B, respectively.

2. One-time setup. Assume A, B possess each other’s authentic public-key. (If this is
not the case, but each party has a certificate carrying its own public key, then one
additional message is required for certificate transport.)

3. Protocol messages.

A→ B : PB(k1, A) (1)
A← B : PA(k1, k2) (2)
A→ B : PB(k2) (3)

4. Protocol actions.

(a) A sends B message (1).
(b) B recovers k1 upon receiving message (1), and returns to A message (2).
(c) Upon decrypting message (2), A checks the key k1 recovered agrees with that

sent in message (1). (Provided k1 has never been previously used, this givesA
both entity authentication of B and assurance that B knows this key.) A sends
B message (3).

(d) Upon decrypting message (3), B checks the key k2 recovered agrees with that
sent in message (2). The session key may be computed as f(k1, k2) using an
appropriate publicly known non-reversible function f .

12.39 Note (modification of Needham-Schroeder protocol) Protocol 12.38 may be modified to
eliminate encryption in the third message. Let r1 and r2 be random numbers generated
respectively by A and B. Then, with checks analogous to those in the basic protocol, the
messages in the modified protocol are:

A→ B : PB(k1, A, r1) (1′)
A← B : PA(k2, r1, r2) (2′)
A→ B : r2 (3′)
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12.5.2 Protocols combining PK encryption and signatures

While privacy of keying material is a requirement in key transport protocols, source au-
thentication is also typically needed. Encryption and signature primitives may respectively
be used to provide these properties. Key transport protocols involving both public-key en-
cryption and signatures include:

1. those which sign the key, then public-key encrypt the signed key;
2. those which sign the key, and separately public-key encrypt the (unsigned) key;
3. those which public-key encrypt the key, then sign the encrypted key; and
4. those using symmetric encryption in addition to public-key encryption and signa-

tures.

The first three types are discussed in this subsection (as noted in §12.5.2(ii), the second is
secure only in certain circumstances); the fourth is discussed in §12.5.3. The signature sch-
emes SA of greatest practical interest are RSA, Rabin signatures, and ElGamal-family sig-
natures (see Chapter 11). The public-key encryption schemes PB of greatest practical in-
terest are RSA, Rabin encryption, and ElGamal encryption (see Chapter 8).

Notation. For data input y, in what follows, SA(y) and PB(y) denote the data values
resulting, respectively, from the signature operation on y using A’s signature private key,
and the encryption operation on y using B’s encryption public key. As a default, it is as-
sumed that the signature scheme does not provide message recovery, i.e., the input y cannot
be recovered from the signature SA(y), and y must be sent explicitly in addition to SA(y)
to allow signature verification. (This is the case for DSA, or RSA following input hashing;
see Chapter 11. However, in the case of encrypting and signing separately, any secret data
y must remain confidential.) If y consists of multiple data values y = (y1, . . . , yn), then
the input is taken to be the bitwise concatenation of these multiple values.

(i) Encrypting signed keys

One option for combining signatures and public-key encryption is to encrypt signed blocks:

A→ B : PB(k, tA∗, SA(B, k, tA∗))

The asterisk denotes that the timestamp tA of A is optional; inclusion facilitates entity au-
thentication ofA toB and provides a freshness property. The identifierB within the scope
of the signature prevents B from sending the signed key on to another party and imper-
sonating A. A disadvantage of this method over the “signing encrypted keys” alternative
(§12.5.2(iii)) is that here the data to be public-key encrypted is larger, implying the possible
requirement of adjusting the block size of the public-key encryption scheme, or the use of
techniques such as cipher-block-chaining. In the case of signature schemes with message
recovery (e.g., ordinary RSA), the above can be simplified to:

A→ B : PB(SA(B, k, tA∗))

(ii) Encrypting and signing separately

For signature schemes without message recovery, a variation of the above option is to sign
the key and encrypt the key, but not to encrypt the signature itself. This is acceptable only
if the signature scheme is such that no information regarding plaintext data can be deduced
from the signature itself on that data (e.g., when the signature operation involves prelimi-
nary one-way hashing). This is critical because, in general, data may be recovered from a
signature on it (e.g., RSA without hashing). A summary of this case is then as follows:

A→ B : PB(k, tA∗), SA(B, k, tA∗)
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If the key k is used solely to encrypt a data file y, then the signature SA may be over y
instead of k. This is suitable in store-and-forward environments. The encrypted file may
then be transferred along with the key establishment information, in which case y is first
recovered by using k to decrypt the file, and then the signature on y is verified.

(iii) Signing encrypted keys

In contrast to encrypting signed keys, one may sign encrypted keys:

A→ B : tA∗, PB(A, k), SA(B, tA∗, PB(A, k))

The asterisk denotes that the timestamp tA of A is optional; inclusion facilitates entity au-
thentication of A to B. The parameter A within the scope of the public-key encryption
prevents signature stripping – simply signing a publicly-encrypted key, e.g., SA(PB(k)) is
vulnerable to a third party C extracting the encrypted quantity PB(k) and then oversign-
ing with its own key, thus defeating authentication (cf. Note 12.42). Furthermore, the en-
cryption mechanism must ensure that an adversary C without access to k, cannot change
PB(A, k) to PB(C, k); see Remark 12.19. It is desirable and assumed that the combined
length of the parameters A and k not exceed the blocklength of the public-key encryption
scheme, to limit computation to a single block encryption.

Mutual entity authentication using timestamps. The message format given above can
be used for key establishment in a one-pass protocol, although this provides no entity au-
thentication of the recipient to the originator. For mutual entity authentication, two mes-
sages of this form may be used, yielding essentially X.509 strong two-way authentication
(Protocol 12.40).

Mutual entity authentication using challenge-response. The 2-pass key transport pro-
tocol discussed in the previous paragraph requires the use of timestamps, in which case se-
curity relies on the assumption of secure, synchronized clocks. This requirement can be
eliminated by using a 3-pass protocol with random numbers for challenge-response (essen-
tially the X.509 strong three-way authentication protocol; cf. Protocol 12.43):

A→ B : rA
A← B : rB , PA(B, k1), SB(rB , rA, A, PA(B, k1))
A→ B : PB(A, k2), SA(rA, rB , B, PB(A, k2))

A and B may compute a joint key k as some function of k1 and k2; alternately, one of
PA(B, k1) and PB(A, k2) may be omitted from the second or third message. The iden-
tifiers within the scope of the encryption blocks remain necessary as above; the identifiers
within the scope of (only) the signature are, however, redundant, both here and in the case
of signing encrypted keys above – it may be assumed they must match those corresponding
to the public-key encryption.

(iv) X.509 strong authentication protocols

This subsection considers in greater detail a fully-specified protocol involving public-key
transport using the general technique of §12.5.2(iii), namely, signing encrypted keys.

The X.509 recommendation defines both “strong two-way” and “strong three-way” au-
thentication protocols, providing mutual entity authentication with optional key transport.
Here strong distinguishes these from simpler password-based methods, and two- and three-
way refers to protocols with two and three passes (message exchanges), using timestamps
and challenge-response based on random numbers, respectively.

Both protocols were designed to provide the assurances listed below to the responder
B (and reciprocal assurances intended for the originator A); here token refers to crypto-
graphically protected data:
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1. the identity of A, and that the token received by B was constructed by A (and not
thereafter altered);

2. that the token received by B was specifically intended for B;
3. that the token received byB has “freshness” (has not been used previously, and orig-

inated within an acceptably recent timeframe);
4. the mutual secrecy of the transferred key.

12.40 Protocol X.509 strong two-way authentication (two-pass)

SUMMARY: A sends B one message, and B responds with one message.
RESULT: mutual entity authentication and key transport with key authentication.

1. Notation.
PX(y) denotes the result of applyingX’s encryption public key to data y.
SX(y) denotes the result of applyingX’s signature private key to y.
rA, rB are never re-used numbers (to detect replay and impersonation).
certX is a certificate binding partyX to a public key suitable for both encryption and
signature verification (see Remark 12.41).

2. System setup.
(a) Each party has its public key pair for signatures and encryption.
(b) Amust acquire (and authenticate) the encryption public key ofB a priori. (This

may require additional messages and computation.)
3. Protocol messages. (An asterisk denotes items are optional.)

Let DA = (tA, rA, B,data1
∗, PB(k1)

∗), DB = (tB, rB , A, rA,data2
∗, PA(k2)

∗).

A→ B : certA, DA, SA(DA) (1)
A← B : certB , DB, SB(DB) (2)

4. Protocol actions.
(a) A obtains a timestamp tA indicating an expiry time, generates rA, optionally

obtains a symmetric key k1 and sends toB message (1). (data1 is optional data
for which data origin authentication is desired.)

(b) B verifies the authenticity of certA (checking the signature thereon, expiry date,
etc.), extracts A’s signature public key, and verifies A’s signature on the data
block DA. B then checks that the identifier in message (1) specifies itself as
intended recipient, that the timestamp is valid, and checks that rA has not been
replayed. (rA includes a sequential component whichB checks, against locally
maintained state information, for uniqueness within the validity period defined
by tA.)

(c) If all checks succeed, B declares the authentication of A successful, decrypts
k1 using its private decryption key, and saves this now-shared key. (This termi-
nates the protocol if only unilateral authentication is desired.) B then obtains
timestamp tB , generates rB , and sendsAmessage (2). (data2 is optional data,
and k2 is an optional symmetric key provided for A.)

(d) A carries out actions analogous to those carried out byB. If all checks succeed,
A declares the authentication ofB successful, and saves key k2 for subsequent
use. A and B share mutual secrets k1 and k2.

12.41 Remark (separate keys in X.509) The X.509 standard assumes a public-key scheme such
as RSA, whereby the same key pair may be used for both encryption and signature function-
ality. The protocol, however, is easily adapted for separate signature and encryption keys,
and, indeed, it is prudent to use separate keys. See also Remark 13.32.
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12.42 Note (criticism of X.509 protocol) Since Protocol 12.40 does not specify inclusion of an
identifier (e.g.,A) within the scope of the encryption PB withinDA, one cannot guarantee
that the signing party actually knows (or was the source of) the plaintext key.

12.43 Protocol X.509 strong three-way authentication (three-pass)

SUMMARY: A and B exchange 3 messages.
RESULT: as in Protocol 12.40, without requiring timestamps.
The protocol differs from Protocol 12.40 as follows:

1. Timestamps tA and tB may be set to zero, and need not be checked.
2. Upon receiving (2), A checks the received rA matches that in message (1).
3. A third message is sent from A to B:

A→ B : (rB, B), SA(rB , B) (3)

4. Upon receiving (3),B verifies the signature matches the received plaintext, that plain-
text identifier B is correct, and that plaintext rB received matches that in (2).

12.5.3 Hybrid key transport protocols using PK encryption

In contrast to the preceding key transport protocols, the Beller-Yacobi protocol uses sym-
metric encryption in addition to both PK encryption and digital signatures. Such protocols
using both asymmetric and symmetric techniques are called hybrid protocols.

Beller-Yacobi protocol (4-pass)

The key transport protocol of Beller and Yacobi, which provides mutual entity authentica-
tion and explicit key authentication, was designed specifically for applications where there
is an imbalance in processing power between two parties; the goal is to minimize the com-
putational requirements of the weaker party. (Candidate applications include transactions
involving chipcards, and wireless communications involving a low-power telephone hand-
set.) Another feature of the protocol is that the identity of one of the parties (the weaker,
here A) remains concealed from eavesdroppers.

Essentially, A authenticates itself to B by signing a random challengem, while B au-
thenticates itself to A by demonstrating knowledge of a keyK onlyB itself could recover.
For simplicity of exposition, the protocol is described using RSA with public exponent 3,
although Rabin’s scheme is more efficient and recommended in practice (but see Note 8.13
regarding chosen-ciphertext attack).
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12.44 Protocol Beller-Yacobi key transport (4-pass)

SUMMARY: A transfers keyK to B in a 4-pass protocol.
RESULT: mutual entity authentication and mutual explicit key authentication.

1. Notation.
EK(y) denotes symmetric encryption of y using keyK and algorithmE.
PX(y) denotes the result of applyingX’s public-key function to y.
SX(y) denotes the result of applyingX’s private-key function to y.
IX denotes an identifying string for partyX .
h(y) denotes the hash of y, used in association with the signature scheme.
If y = (y1, . . . , yn), the input is the concatenation of these multiple values.

2. System setup.
(a) Selection of system parameters. An appropriate prime nS and generator α for

the multiplicative group of integers modulo nS are fixed as ElGamal system
parameters. A trusted server T chooses appropriate primes p and q yielding
public modulus nT = pq for RSA signatures, then for public exponent eT = 3
computes a private key dT satisfying: eTdT ≡ 1 mod (p− 1)(q − 1).

(b) Distribution of system parameters. Each party (A andB) is given an authentic
copy of T ’s public key and the system parameters: nT , (nS , α). T assigns to
each party X a unique distinguished name or identifying string IX (e.g., X’s
name and address).

(c) Initialization of terminal. Each party playing the role of A (terminal) selects
a random integer a, 1 < a ≤ nS − 2, and computes its ElGamal signature
public key uA = αa mod nS . A keeps its corresponding private key a secret,
and transfers an authentic copy of uA to T , identifying itself to T by out-of-
band means (e.g., in person). T constructs and returns to A the public-key cer-
tificate: certA = (IA, uA, GA). (The certificate contains A’s identity and
ElGamal signature public key, plus T ’s RSA signature GA over these: GA =
ST (IA, uA) = (h(IA, uA))

dT mod nT .)
(d) Initialization of server. Each party playing the role of B (server) creates an

encryption private key and corresponding public key based on RSA with pub-
lic exponent eB = 3. B chooses a public-key modulus nB as the product
of two appropriate secret primes, and itself computes the corresponding RSA
private key dB . B transfers nB to T , identifying itself to T by out-of-band
means. T then constructs and returns to B the public-key certificate: certB =
(IB , nB, GB). (The certificate contains B’s identity and RSA encryption
public key nB , plus T ’s RSA signature over these: GB = ST (IB , nB) =
(h(IB , nB))

dT mod nT .)

3. Protocol messages.

A← B : certB = (IB, nB, GB) (1)
A→ B : PB(K) = K3 mod nB (2)
A← B : EK(m, {0}t) (3)
A→ B : EK((v, w), certA) (4)

4. Protocol actions. The following steps are performed each time a shared key is re-
quired. The protocol is aborted (with result of failure) if any check fails.

(a) Precomputation by terminal. A selects a random x, 1 ≤ x ≤ nS − 2, and
computes three values: v = αx mod nS ; x−1 mod (nS − 1); and av mod
(nS − 1). (For the security of ElGamal signatures, x must be new for each

signature, and be co-prime to nS − 1 to ensure x−1 exists.)
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(b) B sends to A message (1).
(c) A checks the authenticity of nB by confirming: h(IB , nB) = GB

3 mod nT .
A chooses a random key 1 < K < nB − 1 and sends B message (2), where
Y = PB(K).

(d) B recovers K = SB(Y ) = Y dB mod nB . (The final two messages will be
encrypted using K.) B chooses a random integerm as a challenge, extends it
with t (say t ≈ 50) least significant zeros, symmetrically encrypts this using
keyK, and sends A message (3).

(e) A decrypts the received message, and checks it has t trailing zeros; if so, A ac-
cepts that it originated fromB and thatB knows keyK. A takes the decrypted
challenge m, concatenates it to the identity IB of the party whose public key
it used to share K in message (2), forming the concatenated quantity M =
(m, IB), then computes w satisfying: w ≡ (M − av) · x−1 mod (nS − 1),
and sends B message (4). (Here (v, w) is A’s ElGamal signature on M , and
certA = (IA, uA, GA). The identity IB in M is essential to preclude an
intruder-in-the-middle attack – see §12.9.)

(f) B decrypts the received message, and verifies the authenticity of uA by check-
ing that: h(IA, uA) = GA

3 mod nT . Finally, B constructs the concatenated
quantityM = (m, IB) from the challengem remembered from message (3)
and its own identity, then verifies A’s signature on the challenge by checking
that: αM ≡ uAv · vw mod nS . If all checks succeed, B accepts the party A
associated with identity IA as the source of keyK.

12.45 Note (on Beller-Yacobi key transport protocol)

(i) To achieve mutual authentication here requires that each party carry out at least one
private-key operation (showing knowledge of its private key), and one or two public-
key operations (related to verifying the other’s identity, and its public key if not
known a priori).

(ii) The novelty here is careful selection of two separate public-key schemes, each re-
quiring only an inexpensive computation by the computationally limited party, in
this case A. Choosing RSA with exponent 3 or Rabin with exponent 2 results in
an inexpensive public-key operation (2 or 1 modular multiplications, respectively),
for encryption and signature verification. Choosing ElGamal-family signatures, the
private-key operation is inexpensive (a single modular multiplication, assuming pre-
computation).

(iii) DSA signatures (Chapter 11) or others with similar properties could be used in place
of ElGamal signatures.

12.46 Remark (signature scheme used to certify public keys) Protocol 12.44 requires an ElGa-
mal public key be certified using an RSA signature. This is done for reasons of efficiency,
and highlights an advantage of allowing signature public keys from one system to be certi-
fied using signatures of a different type.

Beller-Yacobi protocol (2-pass)

Protocol 12.44 can be modified to yield a 2-pass protocol as illustrated in Figure 12.2. The
modified protocol is obtained by essentially combining the pair of messages each party
sends into a single message, as now described using notation as in Protocol 12.44.
B generates a random challengem and sends toA: m, certB . A computes its ElGamal

signature (v, w) on the concatenationM = (m, IB), and using part v of the signature as the
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session keyK = v,2 sends to B: PB(v), Ev(certA, w). B recovers v (= K) via public-
key decryption, uses it to recover certA andw, then verifies certA andA’s signature (v, w)
onM = (m, IB).

The 2-pass protocol has slightly weaker authentication assurances: B obtains entity au-
thentication of A and obtains a keyK that A alone knows, while A has key authentication
with respect toB. ForA to obtain explicit key authentication ofB (implying entity authen-
tication also), a third message may be added wherebyB exhibits knowledge through use of
K on a challenge or standard message (e.g., {0}t). All three of A’s asymmetric operations
remain inexpensive.

terminal A server B
precompute x, v = αx mod nS select random challengem

verify certB via PT (GB) ←− sendm, certB
compute (v, w) = SA(m, IB) certB = (IB , nB, GB)

send PB(v), Ev(certA, w) −→ recover v, setK = v
certA = (IA, uA, GA) verify certA, signature (v, w)

Figure 12.2: Summary of Beller-Yacobi protocol (2-pass).

In Figure 12.2, an alternative to usingK = v as the session key is to setK = w. This
results in the property that both parties influence the value ofK (as w is a function of both
m and x).

12.6 Key agreement based on asymmetric
techniques

Diffie-Hellman key agreement (also called exponential key exchange) is a fundamental
technique providing unauthenticated key agreement. This section discusses key establish-
ment protocols based on exponential key agreement, as well as the concept of implicitly-
certified public keys and their use in Diffie-Hellman protocols.

12.6.1 Diffie-Hellman and related key agreement protocols

This section considers the basic Diffie-Hellman protocol and related protocols providing
various authentication assurances (see Table 12.4).

(i) Diffie-Hellman key agreement

Diffie-Hellman key agreement provided the first practical solution to the key distribution
problem, allowing two parties, never having met in advance or shared keying material, to
establish a shared secret by exchanging messages over an open channel. The security rests
on the intractability of the Diffie-Hellman problem and the related problem of computing
discrete logarithms (§3.6). The basic version (Protocol 12.47) provides protection in the
form of secrecy of the resulting key from passive adversaries (eavesdroppers), but not from

2A side effect of usingK = v is thatA no longer directly controls the key value, transforming the key transport
protocol into a key agreement. Alternately, a random x could be chosen byA and used as keyK = x, and x could
be sent encrypted alongside w.
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→ Properties key entity number of
↓ Protocol authentication authentication messages

Diffie-Hellman none none 2
ElGamal key agreement unilateral none 1
MTI/A0 mutual – implicit none 2
Günther (see Remark 12.63) mutual – implicit none 2
STS mutual – explicit mutual 3

Table 12.4: Selected key agreement protocols.

active adversaries capable of intercepting, modifying, or injecting messages. Neither party
has assurances of the source identity of the incoming message or the identity of the party
which may know the resulting key, i.e., entity authentication or key authentication.

12.47 Protocol Diffie-Hellman key agreement (basic version)

SUMMARY: A and B each send the other one message over an open channel.
RESULT: shared secretK known to both parties A and B.

1. One-time setup. An appropriate prime p and generator α of Z∗p (2 ≤ α ≤ p− 2) are
selected and published.

2. Protocol messages.

A→ B : αx mod p (1)
A← B : αy mod p (2)

3. Protocol actions. Perform the following steps each time a shared key is required.

(a) A chooses a random secret x, 1 ≤ x ≤ p− 2, and sends B message (1).
(b) B chooses a random secret y, 1 ≤ y ≤ p− 2, and sends A message (2).
(c) B receives αx and computes the shared key asK = (αx)y mod p.
(d) A receives αy and computes the shared key asK = (αy)x mod p.

12.48 Note (Diffie-Hellman with fixed exponentials) A variation of Protocol 12.47 provides mu-
tual key authentication. Fix αx and αy mod p as long-term public keys of the respective
parties, and distribute these using signed certificates, thus fixing the long-term shared key
for this user pair toK = αxy. If such certificates are available a priori, this becomes a zero-
pass key agreement (no cryptographic messages need be exchanged). The time-invariant
nature of this key K, however, is a drawback; Protocol 12.53 provides one resolution. A
second solution involves use of key update techniques as in §12.3.1(ii).

12.49 Remark (Diffie-Hellman in other groups) The Diffie-Hellman protocol, and those based
on it, can be carried out in any group in which both the discrete logarithm problem is hard
and exponentiation is efficient. The most common examples of such groups used in practice
are the multiplicative group Z∗p of Zp, the analogous multiplicative group of F2m , and the
group of points defined by an elliptic curve over a finite field.

12.50 Note (control over Diffie-Hellman key) While it may appear as though Diffie-Hellman key
agreement allows each party to guarantee key freshness and preclude key control, use of an
exponential with small multiplicative order restricts the order (and thereby value) of the
overall key. The most degenerate case for Zp would be selection of 0 as private exponent,
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yielding an exponential with order 1 and the multiplicative identity itself as the resulting
key. Thus, either participant may force the resulting key into a subset of the original (naively
assumed) range set. Relatedly, some variants of Diffie-Hellman involving unauthenticated
exponentials are vulnerable to the following active attack. Assume α generates Z∗p where
p = Rq + 1 (consider R = 2 and q prime). Then β = αq = α(p−1)/R has order R
(β = −1 for R = 2). If A and B exchange unauthenticated short-term exponentials αx

and αy , an adversary may replace these by (αx)q and (αy)q , forcing the shared key to be
K = αxyq = βxy, which takes one of only R values (+1 or −1 for R = 2). K may thus
be found by exhaustive trial of R values. A more direct attack involves simply replacing
the exchanged exponentials by +1 or p − 1 = −1. This general class of attacks may be
prevented by authenticating the exchanged exponentials, e.g., by a digital signature.

(ii) ElGamal key agreement in one-pass

ElGamal key agreement is a Diffie-Hellman variant providing a one-pass protocol with uni-
lateral key authentication (of the intended recipient to the originator), provided the public
key of the recipient is known to the originator a priori. While related to ElGamal encryp-
tion (§8.4), the protocol is more simply Diffie-Hellman key agreement wherein the public
exponential of the recipient is fixed and has verifiable authenticity (e.g., is embedded in a
certificate).

12.51 Protocol ElGamal key agreement (half-certified Diffie-Hellman)

SUMMARY: A sends to B a single message allowing one-pass key agreement.
RESULT: shared secretK known to both parties A and B.

1. One-time setup (key generation and publication). Each user B does the following:
Pick an appropriate prime p and generator α of Z∗p.
Select a random integer b, 1 ≤ b ≤ p− 2, and compute αb mod p.
B publishes its public key (p, α, αb), keeping private key b secret.

2. Protocol messages.

A→ B : αx mod p (1)

3. Protocol actions. Perform the following steps each time a shared key is required.
(a) A obtains an authentic copy of B’s public key (p, α, αb).
A chooses a random integer x, 1 ≤ x ≤ p− 2, and sends B message (1).
A computes the key asK = (αb)x mod p.

(b) B computes the same key on receipt of message (1) asK = (αx)b mod p.

12.52 Remark (assurances in one-pass ElGamal) The recipient in Protocol 12.51 has no cor-
roboration of whom it shares the secret key with, nor any key freshness assurances. Neither
party obtains entity authentication or key confirmation.

(iii) MTI two-pass key agreement protocols

The MTI/A0 variant (Protocol 12.53) of Diffie-Hellman key agreement yields, in two mes-
sages (neither requiring signatures), time-variant session keys with mutual (implicit) key
authentication against passive attacks. As in ElGamal key agreement (Protocol 12.51), A
sends to B a single message, resulting in the shared key K. B independently initiates an
analogous protocol withA, resulting in the shared keyK ′. Each ofA andB then computes
k = KK ′ mod p (p and α are global parameters now). Neither entity authentication nor
key confirmation is provided. Although appropriate for applications where only passive
attacks are possible, this protocol is vulnerable to certain active attacks (see Note 12.54).
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12.53 Protocol MTI/A0 key agreement

SUMMARY: two-pass Diffie-Hellman key agreement secure against passive attacks.
RESULT: shared secretK known to both parties A and B.

1. One-time setup. Select and publish (in a manner guaranteeing authenticity) an ap-
propriate system prime p and generator α of Z∗p, 2 ≤ α ≤ p − 2. A selects as a
long-term private key a random integer a, 1 ≤ a ≤ p− 2, and computes a long-term
public key zA = αa mod p. (B has analogous keys b, zB .) A and B have access to
authenticated copies of each other’s long-term public key.

2. Protocol messages.

A→ B : αx mod p (1)
A← B : αy mod p (2)

3. Protocol actions. Perform the following steps each time a shared key is required.

(a) A chooses a random secret x, 1 ≤ x ≤ p− 2, and sends B message (1).
(b) B chooses a random secret y, 1 ≤ y ≤ p− 2, and sends A message (2).
(c) A computes the key k = (αy)azBx mod p.
(d) B computes the key k = (αx)bzAy mod p. (Both parties now share the key
k = αbx+ay mod p.)

Table 12.5 summarizes Protocol 12.53 and three related two-pass protocols. All four of
these MTI protocols provide mutual key authentication without key confirmation or entity
authentication, and are role-symmetric: each party executes directly analogous operations.
The protocols are also message-independent per Definition 12.12 (neither party requires
receipt of the other’s message before sending its own), although three of the four require a
priori access to the other party’s authentic public key. The remaining protocol – MTI/A0 –
does not, and requires no additional passes (or communications delays) if this is not true;
public keys may be exchanged e.g., via certificates included with the existing protocol mes-
sages. Thus in MTI/A0, the content of both messages sent is also independent (e.g., of the
identity and public key) of the intended recipient.

↓Protocol mAB mBA KA KB keyK

MTI/A0 αx αy mBA
azB

x mAB
bzA

y αbx+ay

MTI/B0 zB
x zA

y mBA
a−1αx mAB

b−1αy αx+y

MTI/C0 zB
x zA

y mBA
a−1x mAB

b−1y αxy

MTI/C1 zB
xa zA

yb mBA
x mAB

y αabxy

Table 12.5: Selected MTI key agreement protocols. A and B have long-term secrets a and b, re-
spectively, verifiably authentic corresponding long-term public keys zA = αa, zB = αb mod p, and
random per-session secrets x and y, respectively. mAB denotes the message A sends to B;mBA is
analogous. KA andKB are the final keyK as computed by A and B.

12.54 Note (source-substitution attack on MTI/A0) As a general rule in all public-key proto-
cols (including Table 12.5), prior to accepting the authenticated public key of a party A,
a partyB should have assurance (either direct or through a trusted third party) that A actu-
ally knows the corresponding private key. Otherwise, an adversaryC may claimA’s public
key as its own, allowing possible attacks, such as that on MTI/A0 as follows. Assume that
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in a particular implementation,A sends toB its certified public key in a certificate appended
to message (1). C registersA’s public key as its own (legitimately proving its own identity
to the certificate-creating party). When A sends B message (1), C replaces A’s certificate
with its own, effectively changing the source indication (but leaving the exponentialαx sent
by A to B unchanged). C forwardsB’s response αy to A. B concludes that subsequently
received messages encrypted by the key k = αbx+ay originated from C, whereas, in fact,
it is only A who knows k and can originate such messages.

A more complicated attack achieves the same, with C’s public key differing from A’s
public key zA. C selects an integer e, computes (zA)e = αae, and registers the public key
αae. C then modifies αy sent by B in message (2) to (αy)e. A and B each compute the
key k = αaeyαxb, whichA believes is shared withB (and is), whileB believes it is shared
with C.

In both variations,C is not actually able to compute k itself, but rather causesB to have
false beliefs. Such attacks may be prevented by modifying the protocol such that the expo-
nentials are authenticated (cf. Note 12.50), and binding key confirmation evidence to an au-
thenticated source indication, e.g., through a digital signature (cf. Remark 12.58). The MTI
protocols are, however, also subject to certain theoretical known-key attacks (see p.538).

12.55 Remark (implications of message independence) Protocols such as MTI/A0 “leak” no in-
formation about long-term secrets, since the exchanged messages are independent thereof.
However, such protocols in which each party’s message is independent of the other’s, and
yet the session key depends on fresh input from each, cannot provide mutual explicit key
authentication.

12.56 Remark (computational complexity of MTI protocols) The A0 and B0 protocols require
3 exponentiations by each party, whereas the C0 and C1 protocols require only 2. C1 has
the additional advantage over B0 and C0 that no inverses are needed; however, these fixed
long-term values may be precomputed.

(iv) Station-to-Station protocol (STS)

The following three-pass variation of the basic Diffie-Hellman protocol allows the estab-
lishment of a shared secret key between two parties with mutual entity authentication and
mutual explicit key authentication. The protocol also facilitates anonymity – the identities
ofA andB may be protected from eavesdroppers. The method employs digital signatures;
the description below is for the specific case of RSA signatures.

12.57 Protocol Station-to-Station protocol (STS)

SUMMARY: parties A and B exchange 3 messages.
RESULT: key agreement, mutual entity authentication, explicit key authentication.

1. Notation. E is a symmetric encryption algorithm.
SA(m) denotesA’s signature onm, defined as: SA(m) = (H(m))dA mod nA (i.e.,
RSA preceded by an appropriate one-way hash functionH ,H(m) < nA).

2. One-time setup (definition and publication of system parameters).

(a) Select and publish an appropriate system prime p and generator α of Z∗p, 2 ≤
α ≤ p− 2. (For additional security, each party may have its own unique such
parameters as part of its public key.)

(b) Each user A selects RSA public and private signature keys (eA, nA) and dA,
respectively (B has analogous keys). Assume each party has access to authentic
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copies of the other’s public key (if not, certificates can be included in existing
messages (2) and (3)).

3. Protocol messages.

A→ B : αx mod p (1)
A← B : αy mod p, Ek(SB(αy , αx)) (2)
A→ B : Ek(SA(αx, αy)) (3)

4. Protocol actions. Perform the following steps each time a shared key is required.
The protocol is aborted (with failure) immediately upon any signature failure.

(a) A generates a secret random x, 1 ≤ x ≤ p− 2, and sends B message (1).
(b) B generates a secret random y, 1 ≤ y ≤ p − 2, and computes the shared key
k = (αx)y mod p. B signs the concatenation of both exponentials ordered as
in (2), encrypts this using the computed key, and sends A message (2).

(c) A computes the shared key k = (αy)x mod p, decrypts the encrypted data, and
uses B’s public key to verify the received value as the signature on the hash
of the cleartext exponential received and the exponential sent in message (1).
Upon successful verification, A accepts that k is actually shared with B, and
sends B an analogous message (3).

(d) B similarly decrypts the received message (3) and verifiesA’s signature therein.
If successful, B accepts that k is actually shared with A.

The attack of Note 12.50 is precluded in the STS protocol due to the signatures over
the exchanged exponentials.

12.58 Remark (key confirmation in STS protocol) Encryption under key k provides mutual key
confirmation plus allows the conclusion that the party knowing the key is that which signed
the exponentials. The optimal use of this protocol occurs when all subsequent messages are
also to be encrypted under key k; if this is not the case, alternate means of key confirmation
avoiding encryption may be preferable. One alternative is to use a MAC in messages (2) and
(3), e.g., for s = SA(αx, αy),A→ B : (s,MACk(s)). A second alternative is inclusion of
a one-way hash of k within the signed messages, e.g., A→ B : SA(αx, αy , h(k)) where
here h(k)may be replaced by k alone if the signature process itself employs an appropriate
one-way hash.

12.6.2 Implicitly-certified public keys

In contrast both to systems which use public-key certificates (§13.4.2) and to identity-based
systems (§13.4.3), an alternate approach to distributing public keys involves implicitly-
certified public keys, for which a framework is provided in §13.4.4. Use of the word implicit
here is consistent with that in the term (implicit) key authentication. The current section
presents several specific techniques involving implicitly-certified public keys.

(i) Implicitly-certified public keys (of Günther)

Mechanism 12.59 provides a method by which a trusted party may create a Diffie-Hellman
public key rs mod p for an entity, with the key being implicitly-certified. Such public keys,
which may be reconstructed from public data, may be used in key agreement protocols re-
quiring certified Diffie-Hellman public keys (e.g., zA in Protocol 12.53) as an alternative to
transporting these keys by public-key certificates, or in customized protocols such as Pro-
tocol 12.62.
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12.59 Mechanism Günther’s implicitly-certified (identity-based) public keys

SUMMARY: a trusted party T creates an implicitly-certified, publicly-recoverable Diffie-
Hellman public key for A, and transfers to A the corresponding private key.

1. A trusted server T selects an appropriate fixed public prime p and generator α of Z∗p.
T selects a random integer t, with 1 ≤ t ≤ p− 2 and gcd(t, p− 1) = 1 as its private
key, and publishes its public key u = αt mod p, along with α, p.

2. T assigns to each partyA a unique distinguished name or identifying string IA (e.g.,
name and address), and a random integer kA with gcd(kA, p− 1) = 1. T then com-
putes PA = αkA mod p. (PA is A’s reconstruction public data, allowing other par-
ties to compute (PA)a below. The gcd condition ensures thatPA itself is a generator.)

3. Using a suitable hash function h, T solves the following equation for a (restarting
with a new kA if a = 0):

h(IA) ≡ t · PA + kA · a (mod p− 1). (12.1)

4. T securely transmits toA the pair (r, s) = (PA, a), which is T ’s ElGamal signature
(see Chapter 11) on IA. (a is A’s private key for Diffie-Hellman key-agreement.)

5. Any other party can then reconstructA’s (Diffie-Hellman) public key PA
a (= αkAa)

entirely from publicly available information (α, IA, u, PA, p) by computing (since
αh(IA) ≡ uPA · PA

a):

PA
a ≡ αh(IA) · u−PA mod p. (12.2)

The above mechanism can be generalized to be independent of ElGamal signatures, by
using any suitable alternate method to generate a pair (r, s) where r is used as the recon-
struction public data, the secret s is used as a (key-agreement) private key, and whereby the
reconstructed public key rs mod p can be computed from public information alone.

12.60 Remark (optimization of ElGamal signatures) Equation (12.1) can be replaced by using
the following optimization of the ElGamal signature scheme, where gcd(t, p− 1) = 1:

h(IA) ≡ t · a+ kA · PA (mod p− 1).

To solve for a then requires a one-time inverse computation (t−1 mod p− 1) rather than the
per-signature inverse computation ((kA)−1 mod p− 1) required by the original signature
scheme. With this modification, A’s key-agreement public key is ua (= αta) rather than
PA
a (= αkAa), correspondingly recovered by computing

αh(IA) · P−PAA mod p (= αta mod p). (12.3)

(ii) Self-certified public keys (of Girault)

Mechanism 12.61, which is employed in several protocols in §12.6.3, presents a technique
for creating implicitly-certified public keys. It differs from that of Mechanism 12.59 in that
it allows users to “self-certify” the keys, in the sense that the user itself is the only party
knowing the private key (as opposed to the trusted party having access to each party’s pri-
vate key).
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12.61 Mechanism Girault’s self-certified public keys

SUMMARY: a trusted party T creates an implicitly-certified, publicly-recoverable Diffie-
Hellman public key for party A, without learning the corresponding private key.

1. A trusted server T selects secret primes p and q for an RSA integer n = pq, an ele-
ment α of maximal order in Z∗n (see Algorithm 4.83), and appropriate integers e and
d as a (public, private) RSA key pair for n.

2. T assigns to each partyA a unique distinguished name or identifying string IA (e.g.,
name and address).

3. Party A itself chooses a private key a, and provides the public key αa mod n to T
in an authenticatable manner. (αa is A’s key-agreement public key.) Moreover, A
provides proof to T that it knows the corresponding secret a. (This is necessary to
prevent a certain forgery attack by A in some ways analogous to that of Note 12.54,
and might be done by A producing for T a Diffie-Hellman key based on αa and an
exponential chosen by T .)

4. T computesA’s reconstruction public data (essentially replacing a certificate) as PA
= (αa − IA)

d
mod n. (Thus (PA

e + IA) mod n = α
a mod n, and from public

information alone, any party can compute A’s public key, αa mod n.)

12.6.3 Diffie-Hellman protocols using implicitly-certified keys

The authenticity of Diffie-Hellman exponentials used as public keys in authenticated key
agreement protocols can be established by distributing them via public-key certificates,
or by reconstructing them as implicitly-certified public keys (e.g., using Mechanisms of
§12.6.2) from publicly available parameters. Protocol 12.62 is one example of the lat-
ter. The idea may be adopted to other Diffie-Hellman based protocols as further illustrated
by Examples 12.64, 12.65, and 12.66 respectively corresponding to the fixed-key Diffie-
Hellman, ElGamal, and MTI/A0 key agreement protocols of §12.6.1.

12.62 Protocol Günther’s key agreement protocol

SUMMARY: Diffie-Hellman based key agreement protocol between A and B.
RESULT: A and B establish shared secretK with key authentication.

1. One-time setup (definition of global parameters). Using Mechanism 12.59, a trusted
party T constructs ElGamal signatures (PA, a) and (PB , b) on the identities IA and
IB of A and B, respectively, and gives these signatures respectively to A and B as
secrets, along with the following authentic public system parameters as per Mecha-
nism 12.59: a prime p, generator α of Z∗p, and T ’s public key u.

2. Protocol messages.

A→ B : IA, PA (1)
A← B : IB, PB , (PA)y mod p (2)
A→ B : (PB)x mod p (3)

3. Protocol actions. Perform the following steps each time a shared key is required.

(a) A sends B message (1).
(b) B generates a random integer y, 1 ≤ y ≤ p− 2, and sends A message (2).
(c) A generates a random integer x, 1 ≤ x ≤ p− 2, and sends B message (3).
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(d) Key computation. As per Mechanism 12.59, A and B respectively construct
the other’s identity-based public key (equivalent to (PB)b and (PA)a mod p,
respectively). The common key-agreement key K (= αkAya+kBbx) is estab-
lished asA andB respectively computeK = (PA

y)a · (PB
b)x,K = (PA

a)y ·
(PB

x)b mod p.

Protocol 12.62 is subject to theoretical known-key attacks similar to those which apply
to the MTI protocols (Note 12.54).

12.63 Remark (two-pass Günther protocol) In Protocol 12.62, a party’s identity information and
long-term public key (respectively, IA and PA) are long-term parameters. If these are kno-
wn to parties a priori, then this three-pass protocol reduces to two passes. The reduced
protocol provides the same assurances, namely, key agreement with key authentication, as
Protocol 12.62 and the two-pass MTI schemes of Table 12.5, and closely resembles MTI/A0
with respect to the logarithm of the final key.

12.64 Example (Protocol G0) Fixed-key Diffie-Hellman key-agreement (Note 12.48) may be
modified to use implicitly-certified keys as follows. Using the setup and notation as in Gi-
rault’s self-certified public keys (Mechanism 12.61), A and B establish the time-invariant
joint keyK by respectively computing (PB)e + IB mod n (= αb) and (PA)e + IA mod
n (= αa), from which they effectively compute

K = (αb)a and K = (αa)b mod n. (12.4)

Alternatively, the same protocol may be modified to use Günther’s ID-based public keys
assuming the setup and notation as in Mechanism 12.59 with modified ElGamal signatures
as per Remark 12.60. In this case,A andB respectively compute the other’s key-agreement
public keys αtb and αta by (12.3), in place of αb and αa in (12.4). �

12.65 Example (Protocol G1) The one-pass ElGamal key agreement of Protocol 12.51 may be
modified to use implicitly-certified keys as follows. Using the setup and notation as in Gi-
rault’s self-certified public keys (Mechanism 12.61), A chooses a random integer x and
sends to B: αx mod n. A computes PB

e + IB mod n (= α
b). A and B establish the

time-variant joint keyK = αbx mod n, by respectively computing, effectively,

K = (αb)x and K = (αx)b mod n. (12.5)

The protocol may be modified to use Günther’s ID-based public keys as follows: rather
than sending αx mod n to B, A sends PB

x mod p, with PB (and p, b, u, etc.) defined as
in Mechanism 12.59. B then computesK = (PB

x)b mod p, whileA effectively computes
K = (PB

b)x mod p, having reconstructed PB
b via equation (12.2) on page 521. The re-

sulting protocol is essentially one-half of the Günther key agreement of Protocol 12.62. A
related modification utilizing Remark 12.60 involvesA sending toB ux mod p in place of
PB
x, the joint key now being K = ubx mod p, computed by A as K = (ub)x with ub

computed per (12.3), andB computingK = (ux)b mod p. This final protocol then resem-
bles (one-half of) Protocol MTI/A0 in that, since the messageA sends is independent of the
recipientB, it may be computed ahead of time before the recipient is determined. �

12.66 Example (Protocol G2) The two-pass MTI/A0 key agreement (Protocol 12.53) may be
modified to use implicitly-certified keys as follows. Using the setup and notation as in Gi-
rault’s self-certified public keys (Mechanism 12.61), A chooses a random integer x and
sends to B: αx mod n. Analogously, B chooses a random integer y and sends to A: αy
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modn. A computes PB
e+ IB mod n (= α

b); B computes PA
e+ IA mod n (= α

a). A
andB then establish the time-variant common keyK = αay+bx (mod n) by respectively
computingK = (αy)a(PB

e + IB)
x and K = (αx)b(PA

e + IA)
y mod n. Alternatively,

this protocol may be modified to use Günther’s ID-based public keys in a manner directly
analogous to that of Example 12.64. �

12.67 Example (self-certified version of Günther’s ID-based keys) The following modification
of Mechanism 12.59 transforms it into a “self-certified” public-key scheme (i.e., one in
which the third party does not learn users’ private keys). A chooses a secret random v,
1 ≤ v ≤ p−1with gcd(v, p−1) = 1, computesw = αv mod p, and givesw to T . While
v is not given to T ,A should demonstrate knowledge of v to T (cf. Note 12.54). T chooses
kA as before but computes PA = wkA mod p (instead of: PA = αkA ). T solves equa-
tion (12.1) for a as before (using the new PA) and again givesA the pair (r, s) = (PA, a).
A then calculates a′ = a · v−1 mod (p− 1); it follows that (PA, a′) is now T ’s ElGamal
signature on IA (it is easily verified that uPA ·PA

a′ ≡ αh(IA)), and T does not know a′.�

12.7 Secret sharing

Secret sharing schemes are multi-party protocols related to key establishment. The original
motivation for secret sharing was the following. To safeguard cryptographic keys from loss,
it is desirable to create backup copies. The greater the number of copies made, the greater
the risk of security exposure; the smaller the number, the greater the risk that all are lost. Se-
cret sharing schemes address this issue by allowing enhanced reliability without increased
risk. They also facilitate distributed trust or shared control for critical activities (e.g., sign-
ing corporate cheques; opening bank vaults), by gating the critical action on cooperation by
t of n users.

The idea of secret sharing is to start with a secret, and divide it into pieces called shares
which are distributed amongst users such that the pooled shares of specific subsets of users
allow reconstruction of the original secret. This may be viewed as a key pre-distribution
technique, facilitating one-time key establishment, wherein the recovered key is pre-deter-
mined (static), and, in the basic case, the same for all groups.

A secret sharing scheme may serve as a shared control scheme if inputs (shares) from
two or more users are required to enable a critical action (perhaps the recovered key allows
this action to trigger, or the recovery itself is the critical action). In what follows, simple
shared-control schemes introduced in §12.7.1 are a subset of threshold schemes discussed in
§12.7.2, which are themselves a subclass of generalized secret sharing schemes as described
in §12.7.3.

12.7.1 Simple shared control schemes

(i) Dual control by modular addition

If a secret numberS, 0 ≤ S ≤ m−1 for some integerm, must be entered into a device (e.g.,
a seed key), but for operational reasons, it is undesirable that any single individual (other
than a trusted party) know this number, the following scheme may be used. A trusted party
T generates a random number 1 ≤ S1 ≤ m−1, and gives the valuesS1 and S−S1 mod m
to two parties A and B, respectively. A and B then separately enter their values into the
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device, which sums them modulo m to recover S. If A and B are trusted not to collude,
then neither one has any information about S, since the value each possesses is a random
number between 0 andm−1. This is an example of a split-knowledge scheme – knowledge
of the secret S is split among two people. Any action requiring S is said to be under dual
control – two people are required to trigger it.

(ii) Unanimous consent control by modular addition

The dual control scheme above is easily generalized so that the secret S may be divided
among t users, all of whom are required in order to recover S, as follows: T generates t−1
independent random numbers Si, 0 ≤ Si ≤ m − 1, 1 ≤ i ≤ t − 1. Parties P1 through
Pt−1 are given Si, while Pt is given St = S −

∑t−1
i=1 Si mod m. The secret is recovered

as S =
∑t
i=1 Si mod m. Both here and in the dual control scheme above, modulo m

operations may be replaced by exclusive-OR, using data values S and Si of fixed bit-length
lg(m).

12.68 Remark (technique for splitting keys) The individual key components in a split control
scheme should be full-length. This provides greater security than partitioning an r-bit key
into t pieces of r/t bits each. For example, for r = 56 and t = 2, if two parties are each
given 28 bits of the key, exhaustive search by one party requires only 228 trials, while if
each party is given a 56-bit piece, 256 trials are necessary.

12.7.2 Threshold schemes

12.69 Definition A (t, n) threshold scheme (t ≤ n) is a method by which a trusted party com-
putes secret shares Si, 1 ≤ i ≤ n from an initial secret S, and securely distributes Si to
userPi, such that the following is true: any t or more users who pool their shares may easily
recover S, but any group knowing only t − 1 or fewer shares may not. A perfect thresh-
old scheme is a threshold scheme in which knowing only t− 1 or fewer shares provide no
advantage (no information about S whatsoever, in the information-theoretic sense) to an
opponent over knowing no pieces.

The split-knowledge scheme of §12.7.1(i) is an example of a (2, 2) threshold scheme,
while the unanimous consent control of §12.7.1(ii) is a (t, t) threshold scheme.

12.70 Remark (use of threshold schemes) If a threshold scheme is to be reused without decreased
security, controls are necessary to prevent participants from deducing the shares of other
users. One method is to prevent group members themselves from accessing the value of
the recovered secret, as may be done by using a trusted combining device. This is appro-
priate for systems where the objective is shared control, and participants need only see that
an action is triggered, rather than have access to the key itself. For example, each share
might be stored on a chipcard, and each user might swipe its card through a trusted card
reader which computes the secret, thereby enabling the critical action of opening an access
door.

Shamir’s threshold scheme

Shamir’s threshold scheme is based on polynomial interpolation, and the fact that a uni-
variate polynomial y = f(x) of degree t − 1 is uniquely defined by t points (xi, yi) with
distinct xi (since these define t linearly independent equations in t unknowns).
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12.71 Mechanism Shamir’s (t, n) threshold scheme

SUMMARY: a trusted party distributes shares of a secret S to n users.
RESULT: any group of t users which pool their shares can recover S.

1. Setup. The trusted party T begins with a secret integer S ≥ 0 it wishes to distribute
among n users.

(a) T chooses a prime p > max(S, n), and defines a0 = S.
(b) T selects t−1 random, independent coefficients a1, . . . , at−1, 0 ≤ aj ≤ p−1,

defining the random polynomial over Zp, f(x) =
∑t−1
j=0 ajx

j .
(c) T computes Si = f(i) mod p, 1 ≤ i ≤ n (or for any n distinct points i, 1 ≤
i ≤ p − 1), and securely transfers the share Si to user Pi, along with public
index i.

2. Pooling of shares. Any group of t or more users pool their shares (see Remark 12.70).
Their shares provide t distinct points (x, y) = (i, Si) allowing computation of the
coefficients aj , 1 ≤ j ≤ t − 1 of f(x) by Lagrange interpolation (see below). The
secret is recovered by noting f(0) = a0 = S.

The coefficients of an unknown polynomial f(x) of degree less than t, defined by points
(xi, yi), 1 ≤ i ≤ t, are given by the Lagrange interpolation formula:

f(x) =
t∑

i=1

yi
∏

1≤j≤t,j 6=i

x− xj
xi − xj

.

Since f(0) = a0 = S, the shared secret may be expressed as:

S =
t∑

i=1

ciyi , where ci =
∏

1≤j≤t,j 6=i

xj

xj − xi
.

Thus each group member may compute S as a linear combination of t shares yi, since the
ci are non-secret constants (which for a fixed group of t users may be pre-computed).

12.72 Note (properties of Shamir’s threshold scheme) Properties of Mechanism 12.71 include:

1. perfect. Given knowledge of any t− 1 or fewer shares, all values 0 ≤ S ≤ p− 1 of
the shared secret remain equally probable (see Definition 12.69).

2. ideal. The size of one share is the size of the secret (see Definition 12.76).
3. extendable for new users. New shares (for new users) may be computed and dis-

tributed without affecting shares of existing users.
4. varying levels of control possible. Providing a single user with multiple shares be-

stows more control upon that individual. (In the terminology of §12.7.3, this corre-
sponds to changing the access structure.)

5. no unproven assumptions. Unlike many cryptographic schemes, its security does
not rely on any unproven assumptions (e.g., about the difficulty of number-theoretic
problems).

12.7.3 Generalized secret sharing

The idea of a threshold scheme may be broadened to a generalized secret sharing scheme as
follows. Given a set P of users, defineA (the access structure) to be a set of subsets, called
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the authorized subsets of P . Shares are computed and distributed such that the pooling of
shares corresponding to any authorized subset A ∈ A allows recovery of the secret S, but
the pooling of shares corresponding to any unauthorized subset B ⊆ P,B 6∈ A does not.

Threshold schemes are a special class of generalized secret sharing schemes, in which
the access structure consists of precisely all t-subsets of users. An access structure is called
monotone if, whenever a particular subset A of users is an authorized subset, then any sub-
set of P containing A is also authorized. Monotone access structures are a requirement in
many applications, and most natural schemes are monotone. Perfect secret sharing schemes
have a monotone access structure as a consequence of the entropy formulation in Defini-
tion 12.73.

12.73 Definition A secret sharing scheme is perfect if the shares corresponding to each unautho-
rized subset provide absolutely no information, in the information-theoretic sense, about the
shared secret (cf. Definition 12.69). More formally, whereH denotes entropy (see §2.2.1),
and A, B are sets of users using the above notation: H(S|A) = 0 for any A ∈ A, while
H(S|B) = H(S) for any B 6∈ A.

The efficiency of a secret sharing scheme is measured by its information rate.

12.74 Definition For secret sharing schemes, the information rate for a particular user is the bit-
size ratio (size of the shared secret)/(size of that user’s share). The information rate for a
secret sharing scheme itself is the minimum such rate over all users.

12.75 Fact (perfect share bound) In any perfect secret sharing scheme the following holds for
all user shares: (size of a user share)≥ (size of the shared secret). Consequently, all perfect
secret sharing schemes must have information rate ≤ 1.

Justification. If any user Pi had a share of bit-size less than that of the secret, knowledge of
the shares (excepting that of Pi) corresponding to any authorized set to which Pi belonged,
would reduce the uncertainty in the secret to at most that in Pi’s share. Thus by definition,
the scheme would not be perfect.

12.76 Definition Secret sharing schemes of rate 1 (see Definition 12.74) are called ideal.

As per Note 12.72, Shamir’s threshold scheme is an example of an ideal secret sharing
scheme. Examples of access structures are known for which it has been proven that ideal
schemes do not exist.

Secret sharing schemes with extended capabilities

Secret sharing schemes with a variety of extended capabilities exist, including:

1. pre-positioned secret sharing schemes. All necessary secret information is put in
place excepting a single (constant) share which must later be communicated, e.g.,
by broadcast, to activate the scheme.

2. dynamic secret sharing schemes. These are pre-positioned schemes wherein the se-
crets reconstructed by various authorized subsets vary with the value of communi-
cated activating shares.

3. multi-secret threshold schemes. In these secret sharing schemes different secrets are
associated with different authorized subsets.

4. detection of cheaters, and verifiable secret sharing. These schemes respectively ad-
dress cheating by one or more group members, and the distributor of the shares.
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5. secret sharing with disenrollment. These schemes address the issue that when a secret
share of a (t, n) threshold scheme is made public, it becomes a (t− 1, n) scheme.

12.8 Conference keying

12.77 Definition A conference keying protocol is a generalization of two-party key establish-
ment to provide three or more parties with a shared secret key.

Despite superficial resemblance, conference keying protocols differ from dynamic se-
cret sharing schemes in fundamental aspects. General requirements for conference keying
include that distinct groups recover distinct keys (session keys); that session keys are dy-
namic (excepting key pre-distribution schemes); that the information exchanged between
parties is non-secret and transferred over open channels; and that each party individually
computes the session key (vs. pooling shares in a black box). A typical application is tele-
phone conference calls. The group able to compute a session key is called the privileged
subset. When a central point enables members of a (typically large) privileged subset to
share a key by broadcasting one or more messages, the process resembles pre-positioned
secret sharing somewhat and is called broadcast encryption.

An obvious method to establish a conference key K for a set of t ≥ 3 parties is to
arrange that each party share a unique symmetric key with a common trusted party. There-
after the trusted party may choose a new random key and distribute it by symmetric key
transport individually to each member of the conference group. Disadvantages of this ap-
proach include the requirement of an on-line trusted third party, and the communication and
computational burden on this party.

A related approach not requiring a trusted party involves a designated group member
(the chair) choosing a key K, computing pairwise Diffie-Hellman keys with each other
group member, and using such keys to securely sendK individually to each. A drawback
of this approach is the communication and computational burden on the chair, and the lack
of protocol symmetry (balance). Protocol 12.78 offers an efficient alternative, albeit more
complex in design.

Burmester-Desmedt conference keying protocol

The following background is of use in understanding Protocol 12.78. t users U0 through
Ut−1 with individual Diffie-Hellman exponentials zi = αri will form a conference key
K = αr0r1+r1r2+r2r3+···+rt−1r0 . DefineAj = αrjrj+1 = z

rj+1
j andXj= αrj+1rj−rjrj−1 .

NotingAj = Aj−1Xj ,K may equivalently be written as (with subscripts taken modulo t)

Ki = A0A1 · · ·At−1 = Ai−1AiAi+1 · · ·Ai+(t−2)
= Ai−1 · (Ai−1Xi) · (Ai−1XiXi+1) · · · (Ai−1XiXi+1 · · ·Xi+(t−2)).

Noting Ai−1
t = (zi−1)

tri , this is seen to be equivalent toKi as in equation (12.6) of Pro-
tocol 12.78.

12.78 Protocol Burmester-Desmedt conference keying

SUMMARY: t ≥ 2 users derive a common conference keyK.
RESULT:K is secure from attack by passive adversaries.

1. One-time setup. An appropriate prime p and generator α of Z∗p are selected, and au-
thentic copies of these are provided to each of n system users.
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2. Conference key generation. Any group of t ≤ n users (typically t � n), derive
a common conference key K as follows. (Without loss of generality, the users are
labeled U0 through Ut−1, and all indices j indicating users are taken modulo t.)

(a) EachUi selects a random integer ri, 1 ≤ ri ≤ p−2, computes zi = αri mod p,
and sends zi to each of the other t−1 group members. (Assume thatUi has been
notified a priori, of the indices j identifying other conference members.)

(b) Each Ui, after receiving zi−1 and zi+1, computesXi = (zi+1/zi−1)ri mod p
(note Xi = αri+1ri−riri−1 ), and sends Xi to each of the other t − 1 group
members.

(c) After receivingXj , 1 ≤ j ≤ t excluding j = i, Ui computesK = Ki as

Ki = (zi−1)
tri ·Xi

t−1 ·Xi+1
t−2 · · · Xi+(t−3)

2 ·Xi+(t−2)
1 mod p (12.6)

For small conferences (small t), the computation required by each party is small, since
all but one exponentiation in equation (12.6) involves an exponent between 1 and t. The
protocol requires an order be established among users in the privileged subset (for index-
ing). For t = 2, the resulting key is K = (αr1r2)2, the square of the standard Diffie-
Hellman key. It is provably as difficult for a passive adversary to deduce the conference
keyK in Protocol 12.78 as to solve the Diffie-Hellman problem.

Attention above has been restricted to unauthenticated conference keying; additional
measures are required to provide authentication in the presence of active adversaries. Pro-
tocol 12.78 as presented assumes a broadcast model (each user exchanges messages with
all others); it may also be adapted for a bi-directional ring (wherein each user transmits only
to two neighbors).

Unconditionally secure conference keying

While conference keying schemes such as Protocol 12.78 provide computational security,
protocols with the goal of unconditional security are also of theoretical interest. Related to
this, a generalization of Fact 12.34 is given below, for conferences of fixed size (t partici-
pants from among n users) which are information-theoretically secure against conspiracies
of up to j non-participants. The model for this result is a non-interactive protocol, and more
specifically a key pre-distribution scheme: each conference member computes the confer-
ence key solely from its own secret data (pre-distributed by a server) and an identity vector
specifying (an ordered sequence of) indices of the other conference members.

12.79 Fact (Blundo’s conference KDS bound) In any j-secure conference KDS providingm-bit
conference keys to privileged subsets of fixed size t, the secret data stored by each user must
be at leastm ·

(
j+t−1
t−1

)
bits.

Fact 12.79 with t = 2 and j = n − 2 corresponds to the trivial scheme (see p.505)
where each user has n − 1 shared keys each of m bits, one for each other user. A non-
trivial scheme meeting the bound of Fact 12.79 can be constructed as a generalization of
Mechanism 12.35 (see p.540).

12.80 Remark (refinement of Fact 12.79) A more precise statement of Fact 12.79 requires con-
sideration of entropy; the statement holds if the conference keys in question havem bits of
entropy.
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12.9 Analysis of key establishment protocols

The main objective of this section is to highlight the delicate nature of authenticated key
establishment protocols, and the subtlety of design flaws. Examples of flawed protocols
are included to illustrate typical attack strategies, and to discourage protocol design by the
novice.

12.9.1 Attack strategies and classic protocol flaws

The study of successful attacks which have uncovered flaws in protocols allows one to learn
from previous design errors, understand general attack methods and strategies, and formu-
late design principles. This both motivates and allows an understanding of various design
features of protocols. General attack strategies are discussed in §12.2.3. In the specific ex-
amples below, A and B are the legitimate parties, and E is an adversary (enemy). Two of
the protocols discussed are, in fact, authentication-only protocols (i.e., do not involve key
establishment), but are included in this discussion because common principles apply.

Attack 1: Intruder-in-the-middle

The classic “intruder-in-the-middle” attack on unauthenticated Diffie-Hellman key agree-
ment is as follows.

A E B

→ αx → αx
′

→
← αy

′
← αy ←

A and B have private keys x and y, respectively. E creates keys x′ and y′. E intercepts
A’s exponential and replaces it by αx

′
; and intercepts B’s exponential, replacing it with

αy
′
. A forms session keyKA = αxy

′
, while B forms session keyKB = αx

′y. E is able
to compute both these keys. When A subsequently sends a message to B encrypted under
KA, E deciphers it, re-enciphers underKB, and forwards it to B. Similarly E deciphers
messages encrypted by B (for A) under KB , and re-enciphers them under KA. A and B
believe they communicate securely, while E reads all traffic.

Attack 2: Reflection attack

Suppose A and B share a symmetric key K, and authenticate one another on the basis of
demonstrating knowledge of this key by encrypting or decrypting a challenge as follows.

A B
→ rA (1)
EK(rA, rB) ← (2)

→ rB (3)

An adversary E can impersonate B as follows. Upon A sending (1), E intercepts it, and
initiates a new protocol, sending the identical message rA back toA as message (1) purport-
edly from B. In this second protocol, A responds with message (2′): EK(rA, rA′), which
E again intercepts and simply replays back on A as the answer (2) in response to the chal-
lenge rA in the original protocol. A then completes the first protocol, and believes it has
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successfully authenticatedB, while in factB has not been involved in any communications.

A E
→ rA (1)

rA ← (1′)
→ EK(rA, rA

′) (2′)
EK(rA, rB = rA

′) ← (2)
→ rB (3)

The attack can be prevented by using distinct keys K and K ′ for encryptions from A to
B and B to A, respectively. An alternate solution is to avoid message symmetry, e.g., by
including the identifier of the originating party within the encrypted portion of (2).

Attack 3: Interleaving attack

Consider the following (flawed) authentication protocol, where sA denotes the signature
operation of party A, and it is assumed that all parties have authentic copies of all others’
public keys.

A B
→ rA (1)

rB , sB(rB , rA, A) ← (2)
→ rA

′, sA(rA
′, rB , B) (3)

The intention is that the random numbers chosen byA andB, respectively, together with the
signatures, provide a guarantee of freshness and entity authentication. However, an enemy
E can initiate one protocol withB (pretending to beA), and another withA (pretending to
beB), as shown below, and use a message from the latter protocol to successfully complete
the former, thereby deceivingB into believing E is A (and that A initiated the protocol).

A E B
→ rA (1)

rB, sB(rB , rA, A) ← (2)
rB ← (1′)

→ rA
′, sA(rA

′, rB , B) (2′)
→ rA

′, sA(rA
′, rB, B) (3)

This attack is possible due to the message symmetry of (2) and (3), and may be prevented
by making their structures differ, securely binding an identifier to each message indicating
a message number, or simply requiring the original rA take the place of rA′ in (3).

The implications of this attack depend on the specific objectives the protocol was as-
sumed to provide. Such specific objectives are, however, (unfortunately) often not explic-
itly stated.

Attack 4: Misplaced trust in server

The Otway-Rees protocol (Protocol 12.29) has messages as follows:

A→ B : M,A,B,EKAT (NA,M,A,B) (1)
B → T : M,A,B,EKAT (NA,M,A,B), EKBT (NB,M,A,B) (2)
B ← T : EKAT (NA, k), EKBT (NB, k) (3)
A← B : EKAT (NA, k) (4)

Upon receiving message (2), the server must verify that the encrypted fields (M,A,B) in
both parts of (2) match, and in addition that these fields match the cleartext (M,A,B). If the
latter check is not carried out, the protocol is open to attack by an enemyE (who is another
authorized system user) impersonatingB as follows. E modifies (2), replacing cleartextB
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by E (but leaving both enciphered versions of both identifiers A and B intact), replacing
nonce NB by its own nonce NE , and using key KET (which E shares a priori with T )
in place ofKBT . Based on the cleartext identifier E, T then encrypts part of message (3)
under KET allowing E to recover k; but A believes, as in the original protocol, that k is
shared with B. The attack is summarized as follows.

A→ B : M,A,B,EKAT (NA,M,A,B) (1)
B → E : M,A,B,EKAT (NA,M,A,B), EKBT (NB,M,A,B) (2)
E → T : M,A,E,EKAT (NA,M,A,B), EKET (NE ,M,A,B) (2

′)
E ← T : EKAT (NA, k), EKET (NE , k) (3)
A← E : EKAT (NA, k) (4)

The attack is possible due to the subtle manner by which A infers the identity of the
other party to which k is made available: in (4), A has no direct indication of the other
party to which T has made k available, but relies on the nonceNA in (4) and its association
with the pair (NA, B) within the protected part of (1). Thus,A relies on (or delegates trust
to) the server to make k available only to the party requested byA, and this can be assured
only by T making use of the protected fields (M,A,B).

12.9.2 Analysis objectives and methods

The primary aim of protocol analysis is to establish confidence in the cryptographic security
of a protocol. The following definitions aid discussion of protocol analysis.

12.81 Definition A key establishment protocol is operational (or compliant) if, in the absence
of active adversaries and communications errors, honest participants who comply with its
specification always complete the protocol having computed a common key and knowledge
of the identities of the parties with whom the key is shared.

The most obvious objectives and properties of key establishment protocols, namely
authenticity and secrecy of keys, are discussed in §12.2.2.

12.82 Definition A key establishment protocol is resilient if it is impossible for an active adver-
sary to mislead honest participants as to the final outcome.

Protocol analysis should confirm that a protocol meets all claimed objectives. As a
minimum, for a key establishment protocol this should include being operational (note this
implies no security guarantees), providing both secrecy and authenticity of the key, and
being resilient. Key authenticity implies the identities of the parties sharing the key are
understood and corroborated, thus addressing impersonation and substitution. Resilience
differs subtlely from authentication, and is a somewhat broader requirement (e.g., see the
attack of Note 12.54). Additional objectives beyond authenticated key establishment may
include key confirmation, perfect forward secrecy, detection of key re-use, and resistance
to known-key attacks (see §12.2.3).

In addition to verifying objectives are met, additional benefits of analysis include:

1. explicit identification of assumptions on which the security of a protocol is based;
2. identification of protocol properties, and precise statement of its objectives (this fa-

cilitates comparison with other protocols, and determining appropriateness);
3. examination of protocol efficiency (with respect to bandwidth and computation).

Essentially all protocol analysis methods require the following (implicitly or explicitly):
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1. protocol specification – an unambiguous specification of protocol messages, when
they are sent, and the actions to be taken upon reception thereof;

2. goals – an unambiguous statement of claimed assurances upon completion;
3. assumptions and initial state – a statement of assumptions and initial conditions;
4. proof – some form of argument that, given the assumptions and initial state, the spec-

ified protocol steps lead to a final state meeting the claimed goals.

Analysis methods

Common approaches for analyzing cryptographic protocols include the following:

1. ad hoc and practical analysis. This approach consists of any variety of convincing
arguments that any successful protocol attack requires a resource level (e.g., time or
space) greater than the resources of the perceived adversary. Protocols which sur-
vive such analysis are said to have heuristic security, with security here typically
in the computational sense and adversaries assumed to have fixed resources. Argu-
ments often presuppose secure building blocks. Protocols are typically designed to
counter standard attacks, and shown to follow accepted principles. Practical argu-
ments (paralleling complexity-theoretic arguments) involving constructions which
assemble basic building blocks may justify security claims.
While perhaps the most commonly used and practical approach, it is in some ways the
least satisfying. This approach may uncover protocol flaws thereby establishing that
a protocol is bad. However, claims of security may remain questionable, as subtle
flaws in cryptographic protocols typically escape ad hoc analysis; unforeseen attacks
remain a threat.

2. reducibility from hard problems. This technique consists of proving that any success-
ful protocol attack leads directly to the ability to solve a well-studied reference prob-
lem (Chapter 3), itself considered computationally infeasible given current knowl-
edge and an adversary with bounded resources. Such analysis yields so-called prov-
ably secure protocols, although the security is conditional on the reference problem
being truly (rather than presumably) difficult.
A challenge in this approach is to establish that all possible attacks have been taken
into account, and can in fact be equated to solving the identified reference problems.
This approach is considered by some to be as good a practical analysis technique as
exists. Such provably secure protocols belong to the larger class of techniques which
are computationally secure.

3. complexity-theoretic analysis. An appropriate model of computation is defined, and
adversaries are modeled as having polynomial computational power (they may mount
attacks involving time and space polynomial in the size of appropriate security pa-
rameters). A security proof relative to the model is then constructed. The existence
of underlyingcryptographic primitives with specified properties is typically assumed.
An objective is to design cryptographic protocols which require the fewest crypto-
graphic primitives, or the weakest assumptions.
As the analysis is asymptotic, care is required to determine when proofs have prac-
tical significance. Polynomial attacks which are feasible under such a model may
nonetheless in practice be computationally infeasible. Asymptotic analysis may be
of limited relevance to concrete problems in practice, which have finite size. Despite
these issues, complexity-theoretic analysis is invaluable for formulating fundamental
principles and confirming intuition.

4. information-theoretic analysis. This approach uses mathematical proofs involving
entropy relationships to prove protocols are unconditionally secure. In some cases,
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this includes the case where partial secrets are disclosed (e.g., for unconditional se-
curity against coalitions of fixed size). Adversaries are modeled to have unbounded
computing resources.
While unconditional security is ultimately desirable, this approach is not applicable
to most practical schemes for several reasons. These include: many schemes, such
as those based on public-key techniques, can at best be computationally secure; and
information-theoretic schemes typically either involve keys of impractically large
size, or can only be used once. This approach cannot be combined with computa-
tional complexity arguments because it allows unlimited computation.

5. formal methods. So-called formal analysis and verification methods include logics of
authentication (cryptographic protocol logics), term re-writing systems, expert sys-
tems, and various other methods which combine algebraic and state-transition tech-
niques. The most popular protocol logic is the Burrows-Abadi-Needham (BAN) log-
ic. Logic-based methods attempt to reason that a protocol is correct by evolving a set
of beliefs held by each party, to eventually derive a belief that the protocol goals have
been obtained.
This category of analysis is somewhat disjoint from the first four. Formal meth-
ods have proven to be of utility in finding flaws and redundancies in protocols, and
some are automatable to varying degrees. On the other hand, the “proofs” provided
are proofs within the specified formal system, and cannot be interpreted as absolute
proofs of security. A one-sidedness remains: the absence of discovered flaws does
not imply the absence of flaws. Some of these techniques are also unwieldy, or ap-
plicable only to a subset of protocols or classes of attack. Many require (manually)
converting a concrete protocol into a formal specification, a critical process which
itself may be subject to subtle flaws.

12.10 Notes and further references
§12.1

While the literature is rife with proposals for key establishment protocols, few comprehen-
sive treatments exist and many proposed protocols are supported only by ad hoc analysis.

§12.2
Much of §12.2 builds on the survey of Rueppel and van Oorschot [1086]. Fumy and Munz-
ert [431] discuss properties and principles for key establishment. While encompassing the
majority of key establishment as currently used in practice, Definition 12.2 gives a some-
what restricted view which excludes a rich body of research. More generally, key establish-
ment may be defined as a process or mechanism which provides a shared capability (rather
than simply a shared secret) between specified sets of participants, facilitating some oper-
ation for which the intention is that other sets of participants cannot execute. This broader
definition includes many protocols in the area of threshold cryptography, introduced inde-
pendently by Desmedt [336], Boyd [182], and Croft and Harris [288]; see the comprehen-
sive survey of Desmedt [337].

The term perfect forward secrecy (Definition 12.16) was coined by Günther [530]; see also
Diffie, van Oorschot, and Wiener [348]. Here “perfect” does not imply any properties of
information-theoretic security (cf. Definition 12.73). The concept of known-key attacks
(Definition 12.17), developed by Yacobi and Shmuely [1256] (see also Yacobi [1255]), is
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related to that of Denning and Sacco [330] on the use of timestamps to prevent message
replay (see page 535).

Among items not discussed in detail in this chapter is quantum cryptography, based on the
uncertainty principle of quantum physics, and advanced by Bennett et al. [114] building
on the idea of quantum coding first described by Wiesner [1242] circa 1970. Although not
providing digital signatures or non-repudiation, quantum cryptography allows key distribu-
tion (between two parties who share no a priori secret keying material), which is provably
secure against adversaries with unlimited computing power, provided the parties have ac-
cess to (aside from the quantum channel) a conventional channel subject to only passive
adversaries. For background on the basic quantum channel for key distribution (quantum
key distribution), see Brassard [192]; Phoenix and Townsend [973] survey developments
in this area including experimental implementations.

Mitchell [879] presented a key agreement system based on use of a public broadcast channel
transmitting data at a rate so high that an eavesdropper cannot store all data sent over a
specified time interval. This is closely related to work of Maurer [815] regarding secret key
agreement using only publicly available information, in turn motivated by Wyner’s wire-
tap channel [1254], which addresses the rate at which secret information can be conveyed
to a communicating partner with security against a passive eavesdropper whose channel is
subject to additional noise.

§12.3
Regarding point-to-point techniques presented, those based on symmetric encryption are
essentially from ISO/IEC 11770-2 [617], while AKEP1 and AKEP2 (Note 12.21; Proto-
col 12.20) are derived from Bellare and Rogaway [94] (see also §12.9 below). The idea
of key derivation allowing key establishment by symmetric techniques based on a one-
way function (without encryption), was noted briefly by Matsumoto, Takashima and Imai
[800]; see also the proposals of Gong [499], and related techniques in the KryptoKnight
suite [891, 141, 142].

Shamir’s no-key protocol (Protocol 12.22; also called Shamir’s three-pass protocol), in-
cluding exponentiation-based implementation, is attributed to Shamir by Konheim [705,
p.345]. Massey [786, p.35] notes that Omura [792], aware of Shamir’s generic protocol,
later independently proposed implementing it with an exponentiation-based cipher as per
Protocol 12.22. See also Massey and Omura [956] (discussed in Chapter 15).

Version 5 of Kerberos (V5), the development of which began in 1989, was specified by
Kohl and Neuman [1041]; for a high-level overview, see Neuman and Ts’o [926] who also
note that a typical timestamp window is 5 minutes (centered around the verifier’s time). The
original design of Kerberos V4 was by Miller and Neuman, with contributions by Saltzer
and Schiller [877]; an overview is given by Steiner, Neuman, and Schiller [1171], while V4
issues are noted by Kohl [701] and the critique of Bellovin and Merritt [103]. The basic pro-
tocol originates from the shared-key protocol of Needham and Schroeder [923], with time-
stamps (which Needham and Schroeder explicitly avoided) later proposed by Denning and
Sacco [330], reducing the number of messages at the expense of secure and synchronized
clocks. Bauer, Berson, and Feiertag [76] addressed symmetric assurances of freshness, re-
covery from single-key compromise, and reduction of messages through per-participant
use of a local counter called an event marker; they also extended the Needham-Schroeder
setting to multiple security domains (each with a separate KDC) and connectionless envi-
ronments. Bellare and Rogaway [96] presented an efficient 4-pass server-based key trans-
fer protocol with implicit key authentication, and key freshness properties secure against
known-key attacks; significantly, their treatment (the first of its kind) shows the protocol to
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be provably secure (assuming a pseudorandom function). Advantages and disadvantages
of using timestamps are discussed in §10.3.1.

Protocol 12.29 is due to Otway and Rees [961]. Kehne, Schönwälder, and Langendörfer
[663] discuss a 5-message nonce-based protocol with the same features as Kerberos (Proto-
col 12.24), without requiring distributed timeclocks. Excluding the optional re-authenticat-
ion capability (as per Kerberos), it is essentially that of Mechanism 9 in ISO/IEC DIS
11770-2 [617], and similar to the 5-message Otway-Rees protocol as augmented per Re-
mark 12.30 (with one fewer encryption by each of A and B); but see also the analysis of
Neuman and Stubblebine [925]. A 5-message authentication protocol included in ISO/IEC
9798-2 [599] provides key transport using a trusted server, with mutual entity authentication
and mutual key confirmation, without timestamps; Needham and Schroeder [924] propose
a 7-message protocol with similar properties.

§12.4
Mechanism 12.35 and Fact 12.34 are due to Blom [158]; a simpler polynomial formulation
is noted under §12.8 below. For background in coding theory, see MacWilliams and Sloane
[778]. Mitchell and Piper [881] consider the use of combinatorial block designs and finite
incidence structures called key distribution patterns to construct a class of non-interactive
KDS. Each user is given a set of secret subkeys (with no algebraic structure as per Blom’s
scheme), from which each pair of users may compute a common key by combining appro-
priate subkeys via a public function. The question of reducing key storage was considered
earlier by Blom [157], including security against coalitions of fixed size and the use of com-
mutative functions (later generalized to symmetric functions by Blundo et al. [169]; see also
§12.8 below). For related work, see Quinn [1014], Gong and Wheeler [506], and §12.7 be-
low.

§12.5
Protocol 12.38, the public-key protocol of Needham and Schroeder [923], was originally
specified to include 4 additional messages whereby signed public keys were requested from
an on-line certification authority. Asymmetric key transport protocols involving various
combinations of encryption and signatures are given in ISO/IEC CD 11770-3 [618]. The
three-pass encrypt-then-sign protocol of §12.5.2(iii) originates from ISO/IEC 9798-3 [600];
it is closely related to the STS protocol (Protocol 12.57) which transfers Diffie-Hellman
exponentials in place of random numbers. I’Anson and Mitchell [567] critique (e.g., see
Note 12.42) the X.509 protocols [595]; see also the formal analysis of Gaarder and Snekken-
es [433]. Protocol 12.44 and the related 2-pass key agreement of Figure 12.2 are due to
Beller and Yacobi [101, 100], building on work of Beller, Chang, and Yacobi [99, 98, 97].

A two-pass key transport protocol called COMSET, based on public-key encryption, was
adopted by the European community RACE Integrity Primitives Evaluation (RIPE) project
[178]. Arising from zero-knowledge considerations studied by Brandt et al. [188], it em-
ploys Williams’ variant of the Rabin public-key encryption (§8.3), and is similar in some
aspects to the Needham-Schroeder public-key and Beller-Yacobi protocols. The protocol
specified in Note 12.39 combines concepts of COMSET and the Needham-Schroeder pro-
tocol.

§12.6
The landmark 1976 paper of Whitfield Diffie and Martin Hellman [345] is the standard ref-
erence for both the seminal idea of public-key cryptography and the fundamental technique
of exponential key agreement. An earlier conference paper of Diffie and Hellman [344],
written in December 1975 and presented in June 1976, conceived the concept of public
key agreement and the use of public-key techniques for identification and digital signatures.
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Diffie [342] reports that amidst joint work on the problem for some time, Hellman distilled
exponential key agreement in May 1976, and this was added to their June 1976 conference
presentation (but not the written paper). Preceding this, in the fall of 1974, Merkle inde-
pendently conceived a particular method for key agreement using the same abstract con-
cepts. Merkle’s puzzle system [849], submitted for publication in 1975 and appearing in
April 1978, is as follows. Alice constructsm puzzles, each of which is a cryptogram Bob
can solve in n steps (exhaustively trying n keys until a recognizable plaintext is found). Al-
ice sends allm puzzles to Bob over an unsecured channel. Bob picks one of these, solves
it (cost: n steps), and treats the plaintext therein as the agreed key, which he then uses to
encrypt and send to Alice a known message. The encrypted message, now a puzzle which
Alice must solve, takes Alice n steps (by exhaustively trying n keys). For m ≈ n, each
of Alice and Bob requireO(n) steps for key agreement, while an opponent requiresO(n2)
steps to deduce the key. An appropriate value n is chosen such that n steps is computation-
ally feasible, but n2 is not.

Rueppel [1078] explores the use of function composition to generalize Diffie-Hellman key
agreement. Shmuely [1127] and McCurley [825] consider composite Diffie-Hellman, i.e.,
Diffie-Hellman key agreement with a composite modulus. McCurley presents a variation
thereof, with an RSA-like modulusm of specific form and particular base α of high order
in Z∗m, which is provably as secure (under passive attack) as the more difficult of factoring
m and solving the discrete logarithm problem modulo the factors ofm.

Regarding Diffie-Hellman key agreement, van Oorschot and Wiener [1209] note that use
of “short” private exponents in conjunction with a random prime modulus p (e.g., 256-bit
exponents with 1024-bit p) makes computation of discrete logarithms easy. They also doc-
ument the attack of Note 12.50, which is related to issues explored by Simmons [1150] con-
cerning a party’s ability to control the resulting Diffie-Hellman key, and more general issues
of unfairness in protocols. Waldvogel and Massey [1228] carefully examine the probability
distribution and entropy of Diffie-Hellman keys under various assumptions. When private
exponents are chosen independently and uniformly at random from the invertible elements
of Zp−1, the φ(p − 1) keys which may result are equiprobable. When private exponents
are chosen independently and uniformly at random from {0, . . . , p−2} (as is customary in
practice), in the best case (when p is a safe prime, p = 2q + 1, q prime) the most probable
Diffie-Hellman key is only 6 times more likely than the least probable, and the key entropy
is less than 2 bits shy of the maximum, lg(p − 1); while in the worst case (governed by a
particular factorization pattern of p−1) the distribution is still sufficiently good to preclude
significant cryptanalytic advantage, for p of industrial size or larger.

The one-pass key agreement of Protocol 12.51 was motivated by the work of ElGamal
[368]. The MTI protocols of Table 12.5 were published in 1986 by Matsumoto, Takashima,
and Imai [800]. MTI/A0 is closely related to a scheme later patented by Goss [519];
in the latter, exclusive-OR is used in place of modular multiplication to combine partial
keys. Matsumoto et al. equate the computational complexity of passive attacks (exclud-
ing known-key attacks) on selected key agreement protocols to that of one or two Diffie-
Hellman problems. Active attacks related to Note 12.54 are considered by Diffie, van
Oorschot, and Wiener [348], and Menezes, Qu, and Vanstone [844]. Yacobi and Shmuely
[1256] note two time-variant versions of Diffie-Hellman key agreement which are inse-
cure against known-key attack. A similar protocol which falls to known-key attack was
discussed by Yacobi [1255], subsequently rediscovered by Alexandris et al. [21], and re-
examined by Nyberg and Rueppel [937]. Yacobi [1255] proves that the MTI/A0 proto-
col with composite-modulus is provably secure (security equivalent to composite Diffie-
Hellman) under known-key attack by a passive adversary; Desmedt and Burmester [339],
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however, note the security is only heuristic under known-key attack by an active adversary.
A formal-logic security comparison of the protocols of Goss (essentially Protocol 12.53),
Günther (Protocol 12.62), and STS (Protocol 12.57) is given by van Oorschot [1204].
Burmester [220] identifies known-key triangle attacks which may be mounted on the for-
mer two and related protocols which provide only implicit key authentication (including
MTI protocols, cf. Note 12.54). Known-key attacks were also one motivation for Denning
and Sacco [330] to modify the Needham-Schroeder protocol as discussed above (cf. p.534).

Protocol 12.57 (STS) evolved from earlier work on ISDN telephone security as outlined by
Diffie [342, p.568], who also reports on STU-III telephones. Variations of STS and an infor-
mal model for authentication and authenticated key establishment are discussed by Diffie,
van Oorschot, and Wiener [348]. Bellovin and Merritt [104, 105] (see also the patent [102])
propose another hybrid protocol (Encrypted Key Exchange – EKE), involving exponential
key agreement with authentication based on a shared password, designed specifically to
protect against password-guessing attacks by precluding easy verification of guessed pass-
words; Steiner, Tsudik, and Waidner [1172] provide further analysis and extensions. A hy-
brid protocol with similar goals is given Gong et al. [504], including discussion of its rela-
tionship to EKE, and expanding the earlier work of Lomas et al. [771].

Blom [157] was apparently the first to propose an identity-based (or more accurately,
index-based) key establishment protocol. Shamir [1115] proposed the more general idea of
identity-based systems wherein a user’s public key may be a commonly known name and
address. For further discussion of ID-based schemes, see the chapter notes on §13.4. Self-
certified public keys (Mechanism 12.61) are discussed by Girault [459], who credits earlier
work by others, and provides the self-certified version of Günther’s ID-based keys (Exam-
ple 12.67). The parenthetical forgery attack mentioned in Mechanism 12.61 is outlined by
Stinson [1178]. Key agreement protocols as in Examples 12.64 and 12.65, using both ID-
based public keys of Günther [530] (Mechanism 12.59) and modified ElGamal signatures,
are given by Horster and Knobloch [562]. The optimization of ElGamal signatures noted in
Remark 12.60 is by Agnew, Mullin, and Vanstone [19]. Rabin’s signature scheme (Chap-
ter 11) may be used in place of RSA to reduce the computations required in schemes based
on Girault’s implicitly-certified public keys. Maurer and Yacobi [824] (modifying their
earlier proposal [823]) propose an identity-based one-pass key pre-distribution scheme us-
ing composite modulus Diffie-Hellman, featuring implicitly-certified public key-agreement
keys essentially consisting of a user’s identity (or email address); the corresponding private
key is the discrete logarithm of this, computed by a trusted authority which, knowing the
factorization of an appropriately chosen modulus n, can thereby compute logarithms.

Nyberg and Rueppel [936] note their signature scheme (Chapter 11) may be used to cre-
ate implicitly certified, identity-based public keys with properties similar to those of Gi-
rault (Mechanism 12.61), as well as key agreement protocols; Nyberg [935] presents an im-
proved one-pass key agreement based on these ideas. Okamoto and Tanaka [946] propose
identity-based key agreement protocols combining exponential key agreement and RSA,
including one using timestamps and providing entity authentication, and a simpler protocol
providing (implicit) key authentication.

§12.7
The idea of split control has long been known (e.g., see Sykes [1180]). Shamir [1110] and
Blakley [148] independently proposed the idea of threshold schemes, the latter based on
vector subspaces. The simplest example of the Blakley’s idea is a (2, n) threshold scheme
where the shares (here called shadows) distributed to parties are non-collinear lines in a
common plane; the shared secret of any two parties is the intersection of their lines. For a
(3, n) scheme, the shadows consist of non-parallel planes, any two of which intersect in a
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line, and any three of which intersect in a point. While Shamir’s threshold scheme is perfect,
Blakley’s vector scheme is not (the set of possible values of the shared secret narrows as
subsequent shares are added). Karnin, Greene, and Hellman [662] discuss the unanimous
consent control scheme of §12.7.1; see also Diffie and Hellman [344, p.110].

Generalized secret sharing schemes and the idea of access structures were first studied by
Ito, Saito, and Nishizeki [625], who provided a construction illustrating that any monotone
access structure can be realized by a perfect secret sharing scheme. Benaloh and Leichter
[112] provided more elegant constructions. A comprehensive discussion of secret shar-
ing including adaptations providing shared control capabilities of arbitrary complexity, and
many of the extended capabilities including pre-positioned schemes, is given by Simmons
[1145, 1141, 1142], mainly with geometric illustration. An exposition by Stinson [1177]
addresses information rate in particular. Ingemarsson and Simmons [570] consider secret
sharing schemes which do not require a trusted party.

Laih et al. [732] consider dynamic secret sharing schemes. Blundo et al. [168] consider
pre-positioned schemes, dynamic secret sharing, and bounds on share sizes and broadcast
messages therein; Jackson, Martin, and O’Keefe [629] examine related multi-secret thresh-
old schemes. Blakley et al. [147] consider threshold schemes with disenrollment.

Tompa and Woll [1195] note that an untrustworthy participant U may cheat in Shamir’s
threshold scheme by submitting a share different than its own, but carefully computed such
that pooling of shares provides other participants with no information about the secret S,
while allowing U to recover S. They propose modifications which (with high probability)
allow detection of cheating, and which prevent a cheater U from actually obtaining the se-
cret.

The related problem of verifiable secret sharing, which is of broader interest in secure dis-
tributed computation, was introduced by Chor et al. [259]; see also Benaloh [110] and Feld-
man [390], as well as Rabin and Ben-Or [1028]. Here the trusted party distributing shares
might also cheat, and the goal is to verify that all distributed shares are consistent in the
sense that appropriate subsets of shares define the same secret. For applications of verifi-
able secret sharing to key escrow, see Micali [863].

Fact 12.75 is based on the definition of perfect secret sharing and information-theoretic se-
curity, as is the majority of research in secret sharing. Ramp schemes with shares shorter
than the secret were examined by Blakley and Meadows [151]; while trading off per-
fect security for shorter shares, their examination is nonetheless information-theoretic. In
practice, a more appropriate goal may be computationally secure secret sharing; here the
objective is that if one or more shares is missing, an opponent has insufficient informa-
tion to (computationally) recover the shared secret. This idea was elegantly addressed by
Krawczyk [715] as follows. To share a large s-bit secret S = P (e.g., a plaintext file)
among n users, first encrypt it under a k-bit symmetric key K as C = EK(P ); using a
perfect secret sharing scheme such as Shamir’s (t, n) scheme, split K into n k-bit shares
K1, . . . ,Kn; then using Rabin’s information dispersal algorithm (IDA) [1027] split C
into n pieces C1, . . . , Cn each of (s/t) bits; finally, distribute to user Ui the secret share
Si = (Ki, Ci). Any t participants who pool their shares can then recoverK by secret shar-
ing, C by IDA, and P = S by decryptingC usingK. By the remarkable property of IDA,
the sum of the sizes of the t piecesCi used is exactly the size of the recovered secret S itself
(which cannot be bettered); globally, the only space overhead is that for the short keysKi,
whose size k is independent of the large secret S.

The clever idea of visual cryptography to facilitate sharing (or encryption) of pictures is due
to Naor and Shamir [919]. The pixels of a (secret) picture are treated as individual secrets
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to be shared. The picture is split into two or more images each of which contains one share
for each original pixel. Each original pixel is split into shares by subdivision into subpixels
of appropriate size, with selection of appropriate combinations of subpixel shadings (black
and white) such that stacking the images on transparencies reveals the original, while each
individual image appears random. Picture recovery requires no computation (it is visual);
anyone with all but one of the images still has (provably) no information.

§12.8
An early investigation of conference keying schemes based on Diffie-Hellman key agree-
ment was undertaken by Ingemarsson, Tang and Wong [571]. The protocol of Burmester
and Desmedt [222] (Protocol 12.78) is the most efficient of those which have been proposed
and are provably secure; their work includes a review of alternate proposals and a thorough
bibliography. Research in this area with particular emphasis on digital telephony includes
that of Brickell, Lee, and Yacobi [205]; Steer et al. [1169]; and Heiman [547].

Matsumoto and Imai [799] systematically define (symmetric-key) key pre-distribution sch-
emes, based on symmetric functions, for conferences of two or more parties. Their propos-
als are non-interactive and ID-based, following the original idea of two-party non-interact-
ive ID-based schemes by Blom [157, 158], including consideration of information-theoretic
security against coalitions of fixed size. Tsujii and Chao [1197], among many others, pro-
pose schemes in a similar setting. Blundo et al. [169] both specialize the work of Mat-
sumoto and Imai, and generalize Blom’s symmetric key distribution (Mechanism 12.35)
and bounds from two-party key pre-distribution to non-interactive j-secure conference key-
ing schemes of fixed size; prove Fact 12.79; and provide a scheme meeting this bound.
Their generalization uses symmetric polynomials in t variables for privileged subsets of size
t, yielding in the two-party case (t = 2) an equivalent but simpler formulation of Blom’s
scheme: the trusted party selects an appropriate secret symmetric polynomial f(x, y) and
gives party i the secret univariate polynomial f(i, y), allowing parties i and j to share the
pairwise key f(i, j) = f(j, i). They also consider an interactive model. Further examina-
tion of interactive vs. non-interactive conferencing is undertaken by Beimel and Chor [83].
Fiat and Naor [394] consider j-secure broadcast encryption schemes, and practical schemes
requiring less storage; for the former, Blundo and Cresti [167] establish lower bounds on
the number of keys held and the size of user secrets.

Berkovits [116] gives constructions for creating secret broadcasting schemes (conference
keying schemes where all messages are broadcast) from (t, n) threshold schemes. Essen-
tially, for conferences with t members, a new (t+ 1, 2t+ 1) threshold scheme with secret
K is created from the old, and t new shares are publicly broadcast such that each of the t
pre-assigned secret shares of the intended conference members serves as share t+1, allow-
ing recovery of the conference keyK in the new scheme. For related work involving use of
polynomial interpolation, key distribution involving a trusted party, and broadcasting keys,
see Gong [502] and Just et al. [647].

§12.9
The intruder-in-the-middle attack (Attack 1) is discussed by Rivest and Shamir [1057],
who propose an “interlock protocol” to allow its detection; but see also Bellovin and Mer-
ritt [106]. The reflection attack (Attack 2) is discussed by Mitchell [880]. Attack 4 on
the Otway-Rees protocol is discussed by Boyd and Mao [183] and van Oorschot [1205].
The interleaving attack (Attack 3) is due to Wiener circa June 1991 (document ISO/IEC
JTC1/SC27 N313, 2 October 1991), and discussed by Diffie, van Oorschot, and Wiener
[348] along with attacks on sundry variations of Diffie-Hellman key agreement. Bird et
al. [140] systematically examine interleaving attacks on symmetric-key protocols, consider
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exhaustive analysis to detect such attacks, and propose a protocol resistant thereto (namely
2PP, included in the IBM prototype KryptoKnight [891]; see also [141, 142]).

Bellare and Rogaway [94], building on the work of earlier informal models, present a
complexity-theoretic communications model and formal definitions for secure symmetric-
key two-party mutual authentication and authenticated key establishment, taking known-
key attacks into account. They prove AKEP1 (Note 12.21) and AKEP2 (Protocol 12.20)
secure relative to this model, for parameters of appropriate size and assuming h and h′ are
pseudorandom functions or pseudorandom permutations; they also suggest practical con-
structions for pseudorandom functions based on DES and MD5. Gong [503] examines the
efficiency of various authentication protocols and proposes lower bounds (e.g., on the num-
ber of message-passes required).

The examples illustrating attacks on flawed protocols are only a few of countless docu-
mented in the literature. Moore [898] provides an excellent survey on protocol failure; see
also Anderson and Needham [31] and Abadi and Needham [1] for sound engineering prin-
ciples. A large number of authenticated key establishment protocols with weaknesses are
analyzed using the BAN logic in the highly recommended report of Burrows, Abadi, and
Needham [227] (and by the same title: [224, 226, 225]). Gligor et al. [463] discuss the lim-
itations of authentication logics. Syverson [1181] examines the goals of formal logics for
protocol analysis and the utility of formal semantics as a reasoning tool. Among the au-
thentication logics evolving from BAN are those of Abadi and Tuttle [2], Gong, Needham,
and Yahalom [505], and Syverson and van Oorschot [1183]. The work of Abadi and Tuttle
is notable for its model of computation and formal semantics relative to this model. Lamp-
son et al. [740] both provide a theory of authentication in distributed systems (including
delegation and revocation) and discuss a practical system based on this theory.

One of the first contributions to formal protocol analysis was that of Dolev and Yao [359],
whose formal model, which focuses on two-party protocols for transmitting secret plain-
texts, facilitates precise discussion of security issues. This approach was augmented with
respect to message authentication and information leakage by Book and Otto [170]. Three
general approaches to protocol analysis are discussed by Kemmerer, Meadows, and Millen
[664] (see also Simmons [1148]): an algebraic approach, a state transition approach, and
a logical approach (which can be given a state-transition semantics). They illustrate sev-
eral methods on a protocol with known flaws (the infamous TMN protocol of Tatebayashi,
Matsuzaki, and Newman [1188]). Other recent surveys on formal methods include that of
Meadows [831], and the comprehensive survey of Rubin and Honeyman [1073]. An exten-
sive bibliographic tour of authentication literature is provided by Liebl [765].
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