
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter11
Digital Signatures

Contents in Brief

11.1 Introduction . 425
11.2 A framework for digital signature mechanisms 426
11.3 RSA and related signature schemes 433
11.4 Fiat-Shamir signature schemes 447
11.5 The DSA and related signature schemes 451
11.6 One-time digital signatures . 462
11.7 Other signature schemes . 471
11.8 Signatures with additional functionality 474
11.9 Notes and further references . 481

11.1 Introduction

This chapter considers techniques designed to provide the digital counterpart to a handwrit-
ten signature. A digital signature of a message is a number dependent on some secret known
only to the signer, and, additionally, on the content of the message being signed. Signatures
must be verifiable; if a dispute arises as to whether a party signed a document (caused by ei-
ther a lying signer trying to repudiate a signature it did create, or a fraudulent claimant), an
unbiased third party should be able to resolve the matter equitably, without requiring access
to the signer’s secret information (private key).

Digital signatures have many applications in information security, including authenti-
cation, data integrity, and non-repudiation. One of the most significant applications of dig-
ital signatures is the certification of public keys in large networks. Certification is a means
for a trusted third party (TTP) to bind the identity of a user to a public key, so that at some
later time, other entities can authenticate a public key without assistance from a trusted third
party.

The concept and utility of a digital signature was recognized several years before any
practical realization was available. The first method discovered was the RSA signature sch-
eme, which remains today one of the most practical and versatile techniques available. Sub-
sequent research has resulted in many alternative digital signature techniques. Some offer
significant advantages in terms of functionality and implementation. This chapter is an ac-
count of many of the results obtained to date, with emphasis placed on those developments
which are practical.

425

426 Ch. 11 Digital Signatures

Chapter outline

§11.2 provides terminology used throughout the chapter, and describes a framework for dig-
ital signatures that permits a useful classification of the various schemes. It is more abstract
than succeeding sections. §11.3 provides an indepth discussion of the RSA signature sch-
eme, as well as closely related techniques. Standards which have been adopted to imple-
ment RSA and related signature schemes are also considered here. §11.4 looks at meth-
ods which arise from identification protocols described in Chapter 10. Techniques based
on the intractability of the discrete logarithm problem, such as the Digital Signature Algo-
rithm (DSA) and ElGamal schemes, are the topic of §11.5. One-time signature schemes,
many of which arise from symmetric-key cryptography, are considered in §11.6. §11.7 de-
scribes arbitrated digital signatures and the ESIGN signature scheme. Variations on the ba-
sic concept of digital signatures, including blind, undeniable, and fail-stop signatures, are
discussed in §11.8. Further notes, including subtle points on schemes documented in the
chapter and variants (e.g., designated confirmer signatures, convertible undeniable signa-
tures, group signatures, and electronic cash) may be found in §11.9.

11.2 A framework for digital signature mechanisms

§1.6 provides a brief introduction to the basic ideas behind digital signatures, and §1.8.3
shows how these signatures can be realized through reversible public-key encryption tech-
niques. This section describes two general models for digital signature schemes. A com-
plete understanding of the material in this section is not necessary in order to follow sub-
sequent sections; the reader unfamiliar with some of the more concrete methods such as
RSA (§11.3) and ElGamal (§11.5) is well advised not to spend an undue amount of time.
The idea of a redundancy function is necessary in order to understand the algorithms which
give digital signatures with message recovery. The notation provided in Table 11.1 will be
used throughout the chapter.

11.2.1 Basic definitions

1. A digital signature is a data string which associates a message (in digital form) with
some originating entity.

2. A digital signature generation algorithm (or signature generation algorithm) is a
method for producing a digital signature.

3. A digital signature verification algorithm (or verification algorithm) is a method for
verifying that a digital signature is authentic (i.e., was indeed created by the specified
entity).

4. A digital signature scheme (or mechanism) consists of a signature generation algo-
rithm and an associated verification algorithm.

5. A digital signature signing process (or procedure) consists of a (mathematical) digi-
tal signature generation algorithm, along with a method for formatting data into mes-
sages which can be signed.

6. A digital signature verification process (or procedure) consists of a verification algo-
rithm, along with a method for recovering data from the message.1

1Often little distinction is made between the terms scheme and process, and they are used interchangeably.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.2 A framework for digital signature mechanisms 427

This chapter is, for the most part, concerned simply with digital signature schemes. In
order to use a digital signature scheme in practice, it is necessary to have a digital signature
process. Several processes related to various schemes have emerged as commercially rele-
vant standards; two such processes, namely ISO/IEC 9796 and PKCS #1, are described in
§11.3.5 and §11.3.6, respectively. Notation used in the remainder of this chapter is provided
in Table 11.1. The sets and functions listed in Table 11.1 are all publicly known.

Notation Meaning

M a set of elements called the message space.
MS a set of elements called the signing space.
S a set of elements called the signature space.
R a 1− 1 mapping fromM toMS called the redundancy function.
MR the image of R (i.e.,MR = Im(R)).
R−1 the inverse of R (i.e., R−1 :MR −→M).
R a set of elements called the indexing set for signing.
h a one-way function with domainM.
Mh the image of h (i.e., h :M−→Mh);Mh ⊆MS called the

hash value space.

Table 11.1: Notation for digital signature mechanisms.

11.1 Note (comments on Table 11.1)

(i) (messages)M is the set of elements to which a signer can affix a digital signature.
(ii) (signing space)MS is the set of elements to which the signature transformations (to

be described in §11.2.2 and §11.2.3) are applied. The signature transformations are
not applied directly to the setM.

(iii) (signature space) S is the set of elements associated to messages inM. These ele-
ments are used to bind the signer to the message.

(iv) (indexing set)R is used to identify specific signing transformations.

A classification of digital signature schemes

§11.2.2 and §11.2.3 describe two general classes of digital signature schemes, which can be
briefly summarized as follows:

1. Digital signature schemes with appendix require the original message as input to the
verification algorithm. (See Definition 11.3.)

2. Digital signature schemes with message recovery do not require the original message
as input to the verification algorithm. In this case, the original message is recovered
from the signature itself. (See Definition 11.7.)

These classes can be further subdivided according to whether or not |R| = 1, as noted in
Definition 11.2.

11.2 Definition A digital signature scheme (with either message recovery or appendix) is said
to be a randomized digital signature scheme if |R| > 1; otherwise, the digital signature
scheme is said to be deterministic.

Figure 11.1 illustrates this classification. Deterministic digital signature mechanisms can
be further subdivided into one-time signature schemes (§11.6) and multiple-use schemes.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

428 Ch. 11 Digital Signatures

Digital signature schemes

message recovery

appendix

Randomized

Deterministic

Randomized

Deterministic

Figure 11.1: A taxonomy of digital signature schemes.

11.2.2 Digital signature schemes with appendix

Digital signature schemes with appendix, as discussed in this section, are the most com-
monly used in practice. They rely on cryptographic hash functions rather than customized
redundancy functions, and are less prone to existential forgery attacks (§11.2.4).

11.3 Definition Digital signature schemes which require the message as input to the verifica-
tion algorithm are called digital signature schemes with appendix.

Examples of mechanisms providing digital signatures with appendix are the DSA
(§11.5.1), ElGamal (§11.5.2), and Schnorr (§11.5.3) signature schemes. Notation for the
following discussion is given in Table 11.1.

11.4 Algorithm Key generation for digital signature schemes with appendix

SUMMARY: each entity creates a private key for signing messages, and a corresponding
public key to be used by other entities for verifying signatures.

1. Each entity A should select a private key which defines a set SA = {SA,k : k ∈ R}
of transformations. EachSA,k is a 1-1 mapping fromMh to S and is called a signing
transformation.

2. SA defines a corresponding mapping VA fromMh × S to {true, false} such that

VA(m̃, s
∗) =

{
true, if SA,k(m̃) = s∗,
false, otherwise,

for all m̃ ∈ Mh, s∗ ∈ S; here, m̃ = h(m) form ∈ M. VA is called a verification
transformation and is constructed such that it may be computed without knowledge
of the signer’s private key.

3. A’s public key is VA; A’s private key is the set SA.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.2 A framework for digital signature mechanisms 429

11.5 Algorithm Signature generation and verification (digital signature schemes with appendix)

SUMMARY: entity A produces a signature s ∈ S for a messagem ∈ M, which can later
be verified by any entity B.

1. Signature generation. Entity A should do the following:

(a) Select an element k ∈ R.
(b) Compute m̃ = h(m) and s∗ = SA,k(m̃).
(c) A’s signature form is s∗. Bothm and s∗ are made available to entities which

may wish to verify the signature.

2. Verification. Entity B should do the following:

(a) Obtain A’s authentic public key VA.
(b) Compute m̃ = h(m) and u = VA(m̃, s∗).
(c) Accept the signature if and only if u = true.

Figure 11.2 provides a schematic overview of a digital signature scheme with appendix.
The following properties are required of the signing and verification transformations:

(i) for each k ∈ R, SA,k should be efficient to compute;
(ii) VA should be efficient to compute; and

(iii) it should be computationally infeasible for an entity other than A to find anm ∈ M
and an s∗ ∈ S such that VA(m̃, s∗) = true, where m̃ = h(m).

VA true

false

Mh × S

m m̃
h SA,k

M Mh S

s∗ = SA,k(m̃)

(a) The signing process

(b) The verification process

Figure 11.2: Overview of a digital signature scheme with appendix.

11.6 Note (use of hash functions) Most digital signature schemes with message recovery
(§11.2.3) are applied to messages of a fixed length, while digital signatures with appendix
are applied to messages of arbitrary length. The one-way function h in Algorithm 11.5 is

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

430 Ch. 11 Digital Signatures

typically selected to be a collision-free hash function (see Definition 9.3). An alternative
to hashing is to break the message into blocks of a fixed length which can be individually
signed using a signature scheme with message recovery. Since signature generation is rel-
atively slow for many schemes, and since reordering of multiple signed blocks presents a
security risk, the preferred method is to hash.

11.2.3 Digital signature schemes with message recovery

The digital signature schemes described in this section have the feature that the message
signed can be recovered from the signature itself. In practice, this feature is of use for short
messages (see §11.3.3(viii)).

11.7 Definition A digital signature scheme with message recovery is a digital signature scheme
for which a priori knowledge of the message is not required for the verification algorithm.

Examples of mechanisms providing digital signatures with message recovery are RSA
(§11.3.1), Rabin (§11.3.4), and Nyberg-Rueppel (§11.5.4) public-key signature schemes.

11.8 Algorithm Key generation for digital signature schemes with message recovery

SUMMARY: each entity creates a private key to be used for signing messages, and a cor-
responding public key to be used by other entities for verifying signatures.

1. Each entity A should select a set SA = {SA,k : k ∈ R} of transformations. Each
SA,k is a 1-1 mapping fromMS to S and is called a signing transformation.

2. SA defines a corresponding mapping VA with the property that VA ◦SA,k is the iden-
tity map onMS for all k ∈ R. VA is called a verification transformation and is
constructed such that it may be computed without knowledge of the signer’s private
key.

3. A’s public key is VA; A’s private key is the set SA.

11.9 Algorithm Signature generation and verification for schemes with message recovery

SUMMARY: entity A produces a signature s ∈ S for a messagem ∈ M, which can later
be verified by any entity B. The messagem is recovered from s.

1. Signature generation. Entity A should do the following:

(a) Select an element k ∈ R.
(b) Compute m̃ = R(m) and s∗ = SA,k(m̃). (R is a redundancy function; see

Table 11.1 and Note 11.10.)
(c) A’s signature is s∗; this is made available to entities which may wish to verify

the signature and recoverm from it.

2. Verification. Entity B should do the following:

(a) Obtain A’s authentic public key VA.
(b) Compute m̃ = VA(s∗).
(c) Verify that m̃ ∈ MR. (If m̃ 6∈ MR, then reject the signature.)
(d) Recoverm from m̃ by computingR−1(m̃).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.2 A framework for digital signature mechanisms 431

R
M

m

MR

MS

SA,k

m̃

s∗ = SA,k(m̃)

S

Figure 11.3: Overview of a digital signature scheme with message recovery.

Figure 11.3 provides a schematic overview of a digital signature scheme with message
recovery. The following properties are required of the signing and verification transforma-
tions:

(i) for each k ∈ R, SA,k should be efficient to compute;
(ii) VA should be efficient to compute; and

(iii) it should be computationally infeasible for an entity other than A to find any s∗ ∈ S
such that VA(s∗) ∈MR.

11.10 Note (redundancy function) The redundancy function R and its inverseR−1 are publicly
known. Selecting an appropriate R is critical to the security of the system. To illustrate
this point, suppose thatMR =MS . Suppose R and SA,k are bijections fromM toMR

andMS to S, respectively. This implies thatM and S have the same number of elements.
Then for any s∗ ∈ S, VA(s∗) ∈ MR, and it is trivial to find messagesm and corresponding
signatures s∗which will be accepted by the verification algorithm (step 2 of Algorithm 11.9)
as follows.

1. Select random k ∈ R and random s∗ ∈ S.
2. Compute m̃ = VA(s∗).
3. Computem = R−1(m̃).

The element s∗ is a valid signature for the messagem and was created without knowledge
of the set of signing transformations SA.

11.11 Example (redundancy function) SupposeM = {m : m ∈ {0, 1}n} for some fixed posi-
tive integer n andMS = {t : t ∈ {0, 1}2n}. Define R :M −→MS by R(m) = m‖m,
where ‖ denotes concatenation; that is,MR = {m‖m : m ∈ M} ⊆ MS . For large val-
ues of n, the quantity |MR|/|MS| = (

1
2)
n is a negligibly small fraction. This redundancy

function is suitable provided that no judicious choice of s∗ on the part of an adversary will
have a non-negligible probability of yielding VA(s∗) ∈MR. �

11.12 Remark (selecting a redundancy function) Even though the redundancy functionR is pub-
lic knowledge andR−1 is easy to compute, selection ofR is critical and should not be made
independently of the choice of the signing transformations in SA. Example 11.21 provides
a specific example of a redundancy function which compromises the security of the signa-
ture scheme. An example of a redundancy function which has been accepted as an inter-
national standard is given in §11.3.5. This redundancy function is not appropriate for all
digital signature schemes with message recovery, but does apply to the RSA (§11.3.1) and
Rabin (§11.3.4) digital signature schemes.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

432 Ch. 11 Digital Signatures

11.13 Remark (a particular class of message recovery schemes) §1.8.3 describes a class of dig-
ital signature schemes with message recovery which arise from reversible public-key en-
cryption methods. Examples include the RSA (§8.2) and Rabin (§8.3) encryption schemes.
The corresponding signature mechanisms are discussed in §11.3.1 and §11.3.4, respectively.

11.14 Note (signatures with appendix from schemes providing message recovery) Any digital
signature scheme with message recovery can be turned into a digital signature scheme with
appendix by simply hashing the message and then signing the hash value. The message is
now required as input to the verification algorithm. A schematic for this situation can be
derived from Figure 11.3 and is illustrated in Figure 11.4. The redundancy functionR is no
longer critical to the security of the signature scheme, and can be any 1− 1 function from
Mh toMS .

R
MR

MS

SA,k

m̃

s∗ = SA,k(m̃)

MhM

m

h

h(m)

S

Figure 11.4: Signature scheme with appendix obtained from one providing message recovery.

11.2.4 Types of attacks on signature schemes

The goal of an adversary is to forge signatures; that is, produce signatures which will be
accepted as those of some other entity. The following provides a set of criteria for what it
means to break a signature scheme.

1. total break. An adversary is either able to compute the private key information of
the signer, or finds an efficient signing algorithm functionally equivalent to the valid
signing algorithm. (For example, see §11.3.2(i).)

2. selective forgery. An adversary is able to create a valid signature for a particular mes-
sage or class of messages chosen a priori. Creating the signature does not directly
involve the legitimate signer. (See Example 11.21.)

3. existential forgery. An adversary is able to forge a signature for at least one mes-
sage. The adversary has little or no control over the message whose signature is ob-
tained, and the legitimate signer may be involved in the deception (for example, see
Note 11.66(iii)).

There are two basic attacks against public-key digital signature schemes.

1. key-only attacks. In these attacks, an adversary knows only the signer’s public key.
2. message attacks. Here an adversary is able to examine signatures corresponding ei-

ther to known or chosen messages. Message attacks can be further subdivided into
three classes:

(a) known-message attack. An adversary has signatures for a set of messages which
are known to the adversary but not chosen by him.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 433

(b) chosen-message attack. An adversary obtains valid signatures from a chosen
list of messages before attempting to break the signature scheme. This attack
is non-adaptive in the sense that messages are chosen before any signatures
are seen. Chosen-message attacks against signature schemes are analogous to
chosen-ciphertext attacks against public-key encryption schemes (see §1.13.1).

(c) adaptive chosen-message attack. An adversary is allowed to use the signer as an
oracle; the adversary may request signatures of messages which depend on the
signer’s public key and he may request signatures of messages which depend
on previously obtained signatures or messages.

11.15 Note (adaptive chosen-message attack) In principle, an adaptive chosen-message attack is
the most difficult type of attack to prevent. It is conceivable that given enough messages and
corresponding signatures, an adversary could deduce a pattern and then forge a signature of
its choice. While an adaptive chosen-message attack may be infeasible to mount in prac-
tice, a well-designed signature scheme should nonetheless be designed to protect against
the possibility.

11.16 Note (security considerations) The level of security required in a digital signature scheme
may vary according to the application. For example, in situations where an adversary is only
capable of mounting a key-only attack, it may suffice to design the scheme to prevent the
adversary from being successful at selective forgery. In situations where the adversary is
capable of a message attack, it is likely necessary to guard against the possibility of exis-
tential forgery.

11.17 Note (hash functions and digital signature processes) When a hash function h is used in
a digital signature scheme (as is often the case), h should be a fixed part of the signature
process so that an adversary is unable to take a valid signature, replace h with a weak hash
function, and then mount a selective forgery attack.

11.3 RSA and related signature schemes

This section describes the RSA signature scheme and other closely related methods. The
security of the schemes presented here relies to a large degree on the intractability of the
integer factorization problem (see §3.2). The schemes presented include both digital signa-
tures with message recovery and appendix (see Note 11.14).

11.3.1 The RSA signature scheme

The message space and ciphertext space for the RSA public-key encryption scheme (§8.2)
are both Zn = {0, 1, 2, . . . , n − 1} where n = pq is the product of two randomly chosen
distinct prime numbers. Since the encryption transformation is a bijection, digital signa-
tures can be created by reversing the roles of encryption and decryption. The RSA signature
scheme is a deterministic digital signature scheme which provides message recovery (see
Definition 11.7). The signing spaceMS and signature space S are bothZn (see Table 11.1
for notation). A redundancy function R :M−→ Zn is chosen and is public knowledge.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

434 Ch. 11 Digital Signatures

11.18 Algorithm Key generation for the RSA signature scheme

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:

1. Generate two large distinct random primes p and q, each roughly the same size (see
§11.3.2).

2. Compute n = pq and φ = (p− 1)(q − 1).
3. Select a random integer e, 1 < e < φ, such that gcd(e, φ) = 1.
4. Use the extended Euclidean algorithm (Algorithm 2.107) to compute the unique in-

teger d, 1 < d < φ, such that ed ≡ 1 (mod φ).
5. A’s public key is (n, e); A’s private key is d.

11.19 Algorithm RSA signature generation and verification

SUMMARY: entityA signs a messagem ∈ M. Any entityB can verifyA’s signature and
recover the messagem from the signature.

1. Signature generation. Entity A should do the following:

(a) Compute m̃ = R(m), an integer in the range [0, n− 1].
(b) Compute s = m̃d mod n.
(c) A’s signature form is s.

2. Verification. To verify A’s signature s and recover the messagem, B should:

(a) Obtain A’s authentic public key (n, e).
(b) Compute m̃ = se mod n.
(c) Verify that m̃ ∈ MR; if not, reject the signature.
(d) Recoverm = R−1(m̃).

Proof that signature verification works. If s is a signature for a message m, then s ≡
m̃d mod n where m̃ = R(m). Since ed ≡ 1 (mod φ), se ≡ m̃ed ≡ m̃ (mod n). Fi-
nally, R−1(m̃) = R−1(R(m)) = m.

11.20 Example (RSA signature generation with artificially small parameters)
Key generation. Entity A selects primes p = 7927, q = 6997, and computes n = pq =
55465219 and φ = 7926× 6996 = 55450296. A chooses e = 5 and solves ed = 5d ≡ 1
(mod 55450296), yielding d = 44360237. A’s public key is (n = 55465219, e = 5);
A’s private key is d = 44360237.
Signature generation. For the sake of simplicity (but see §11.3.3(ii)), assume thatM = Zn
and that the redundancy functionR :M−→ Zn is the identity mapR(m) = m for allm ∈
M. To sign a messagem = 31229978,A computes m̃ = R(m) = 31229978, and com-
putes the signature s = m̃d mod n = 3122997844360237 mod 55465219 = 30729435.
Signature verification. B computes m̃ = se mod n = 307294355 mod 55465219 =
31229978. Finally,B accepts the signature since m̃ has the required redundancy (i.e., m̃ ∈
MR), and recoversm = R−1(m̃) = 31229978. �

11.3.2 Possible attacks on RSA signatures

(i) Integer factorization

If an adversary is able to factor the public modulus n of some entity A, then the adversary
can computeφ and then, using the extended Euclidean algorithm (Algorithm 2.107), deduce

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 435

the private key d from φ and the public exponent e by solving ed ≡ 1 (mod φ). This
constitutes a total break of the system. To guard against this, A must select p and q so that
factoring n is a computationally infeasible task. For further information, see §8.2.2(i) and
Note 8.8.

(ii) Multiplicative property of RSA

The RSA signature scheme (as well as the encryption method, cf. §8.2.2(v)) has the follow-
ing multiplicative property, sometimes referred to as the homomorphic property. If s1 =
md1 mod n and s2 = md2 mod n are signatures on messagesm1 andm2, respectively (or
more properly on messages with redundancy added), then s = s1s2 mod n has the prop-
erty that s = (m1m2)d mod n. Ifm = m1m2 has the proper redundancy (i.e.,m ∈MR),
then s will be a valid signature for it. Hence, it is important that the redundancy function
R is not multiplicative, i.e., for essentially all pairs a, b ∈ M, R(a · b) 6= R(a)R(b). As
Example 11.21 shows, this condition on R is necessary but not sufficient for security.

11.21 Example (insecure redundancy function) Let n be an RSA modulus and d the private key.
Let k = dlg ne be the bitlength of n, and let t be a fixed positive integer such that t < k/2.
Let w = 2t and let messages be integersm in the interval [1, n2−t − 1]. The redundancy
functionR is taken to be R(m) = m2t (the least significant t bits of the binary representa-
tion of R(m) are 0’s). For most choices of n, R will not have the multiplicative property.
The general existential forgery attack described in Note 11.10 would have a probability of
success of (12)

t. But for this redundancy function, a selective forgery attack (which is more
serious) is possible, as is now explained.

Suppose that an adversary wishes to forge a signature on a messagem. The adversary
knowsn but not d. The adversary can mount the following chosen-message attack to obtain
the signature on m. Apply the extended Euclidean algorithm (Algorithm 2.107) to n and
m̃ = R(m) = m2t = mw. At each stage of the extended Euclidean algorithm, integers
x, y, and r are computed such that xn+ ym̃ = r. It can be shown that at some stage there
exists a y and r such that |y| < n/w and r < n/w, provided w ≤

√
n. If y > 0, form

integersm2 = rw andm3 = yw. If y < 0, form integersm2 = rw andm3 = −yw. In
either case, m2 andm3 have the required redundancy. If signatures s2 = md2 mod n and
s3 = m

d
3 mod n are obtained from the legitimate signer, then the adversary can compute a

signature form as follows:

• if y > 0, compute s2
s3
=
md2
md3
= (rw

yw
)d = (r

y
)d = m̃d mod n;

• if y < 0, compute s2
−s3
=

md2
(−m3)d

= (rw
yw
)d = (r

y
)d = m̃d mod n.

In either case, the adversary has a signed message of its choice with the required redun-
dancy. This attack is an example of a chosen-message attack providing selective forgery. It
emphasizes the requirement for judicious choice of the redundancy functionR. �

11.3.3 RSA signatures in practice

(i) Reblocking problem

One suggested use of RSA is to sign a message and then encrypt the resulting signature. One
must be concerned about the relative sizes of the moduli involved when implementing this
procedure. Suppose that A wishes to sign and then encrypt a message forB. Suppose that
(nA, eA) and (nB, eB) are A’s and B’s public keys, respectively. If nA > nB , then there
is a chance that the message cannot be recovered by B, as illustrated in Example 11.22.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

436 Ch. 11 Digital Signatures

11.22 Example (reblocking problem) Let nA = 8387× 7499 = 62894113, eA = 5, and dA =
37726937; andnB = 55465219,eB = 5, dB = 44360237. Notice thatnA > nB . Suppose
m = 1368797 is a message with redundancy to be signed under A’s private key and then
encrypted using B’s public key. A computes the following:

1. s = mdA mod nA = 136879737726937 mod 62894113 = 59847900.
2. c = seB mod nB = 598479005 mod 55465219 = 38842235.

To recover the message and verify the signature,B computes the following:

1. ŝ = cdB mod nB = 3884223544360237 mod 55465219 = 4382681.
2. m̂ = ŝ eA mod nA = 43826815 mod 62894113 = 54383568.

Observe thatm 6= m̂. The reason for this is that s is larger than the modulus nB . Here, the
probability of this problem occurring is (nA − nB)/nA ≈ 0.12. �

There are various ways to overcome the reblocking problem.

1. reordering. The problem of incorrect decryption will never occur if the operation us-
ing the smaller modulus is performed first. That is, if nA > nB , then entityA should
first encrypt the message using B’s public key, and then sign the resulting cipher-
text using A’s private key. The preferred order of operations, however, is always to
sign the message first and then encrypt the signature; for if A encrypts first and then
signs, an adversary could remove the signature and replace it with its own signature.
Even though the adversary will not know what is being signed, there may be situa-
tions where this is advantageous to the adversary. Thus, reordering is not a prudent
solution.

2. two moduli per entity. Have each entity generate separate moduli for encrypting and
for signing. If each user’s signing modulus is smaller than all of the possible encrypt-
ing moduli, then incorrect decryption never occurs. This can be guaranteed by requir-
ing encrypting moduli to be (t+ 1)-bit numbers and signing moduli t-bit numbers.

3. prescribing the form of the modulus. In this method, one selects the primes p and q so
that the modulusn has a special form: the highest-order bit is a 1 and the k following
bits are all 0’s. A t-bit modulus n of this form can be found as follows. For n to have
the required form, 2t−1 ≤ n < 2t−1 + 2t−k−1. Select a random dt/2e-bit prime p,
and search for a prime q in the interval between d2t−1/pe and b(2t−1+2t−k−1)/pc;
then n = pq is a modulus of the required type (see Example 11.23). This choice for
the modulus n does not completely prevent the incorrect decryption problem, but it
can reduce the probability of its occurrence to a negligibly small number. Suppose
that nA is such a modulus and s = mdA mod nA is a signature onm. Suppose fur-
ther that s has a 1 in one of the high-order k+1 bit positions, other than the highest.
Then s, since it is smaller than nA, must have a 0 in the highest-order bit position
and so is necessarily smaller than any other modulus of a similar form. The proba-
bility that s does not have any 1’s in the high-order k+1 bit positions, other than the
highest, is less than (12)

k, which is negligibly small if k is selected to be around 100.

11.23 Example (prescribing the form of the modulus) Suppose one wants to construct a 12-bit
modulus n such that the high order bit is a 1 and the next k = 3 bits are 0’s. Begin by
selecting a 6-bit prime p = 37. Select a prime q in the interval between d211/pe = 56 and
b(211 + 28)/pc = 62. The possibilities for q are 59 and 61. If q = 59 is selected, then
n = 37× 59 = 2183, having binary representation 100010000111. If q = 61 is selected,
then n = 37× 61 = 2257, having binary representation 100011010001. �

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 437

(ii) Redundancy functions

In order to avoid an existential forgery attack (see §11.2.4) on the RSA signature scheme,
a suitable redundancy function R is required. §11.3.5 describes one such function which
has been accepted as an international standard. Judicious choice of a redundancy function
is crucial to the security of the system (see §11.3.2(ii)).

(iii) The RSA digital signature scheme with appendix

Note 11.14 describes how any digital signature scheme with message recovery can be
modified to give a digital signature scheme with appendix. For example, if MD5 (Algo-
rithm 9.51) is used to hash messages of arbitrary bitlengths to bitstrings of length 128, then
Algorithm 11.9 could be used to sign these hash values. If n is a k-bit RSA modulus, then
a suitable redundancy function R is required to assign 128-bit integers to k-bit integers.
§11.3.6 describes a method for doing this which is often used in practice.

(iv) Performance characteristics of signature generation and verification

Letn = pq be a 2k-bit RSA modulus where p and q are each k-bit primes. Computing a sig-
nature s = md mod n for a messagem requiresO(k3) bit operations (regarding modular
multiplication, see §14.3; and for modular exponentiation, §14.6). Since the signer typi-
cally knows p and q, she can compute s1 = md mod p, s2 = md mod q, and determine s
by using the Chinese remainder theorem (see Note 14.75). Although the complexity of this
procedure remains O(k3), it is considerably more efficient in some situations.

Verification of signatures is significantly faster than signing if the public exponent is
chosen to be a small number. If this is done, verification requires O(k2) bit operations.
Suggested values for e in practice are 3 or 216 + 1;2 of course, p and q must be chosen so
that gcd(e, (p− 1)(q − 1)) = 1.

The RSA signature scheme is thus ideally suited to situations where signature verifica-
tion is the predominant operation being performed. For example, when a trusted third party
creates a public-key certificate for an entity A, this requires only one signature generation,
and this signature may be verified many times by various other entities (see §13.4.2).

(v) Parameter selection

As of 1996, a minimum of 768 bits is recommended for RSA signature moduli. A modulus
of at least 1024 bits is recommended for signatures which require much longer lifetimes or
which are critical to the overall security of a large network. It is prudent to remain aware
of progress in integer factorization, and to be prepared to adjust parameters accordingly.

No weaknesses in the RSA signature scheme have been reported when the public expo-
nent e is chosen to be a small number such as 3 or 216+1. It is not recommended to restrict
the size of the private exponent d in order to improve the efficiency of signature generation
(cf. §8.2.2(iv)).

(vi) Bandwidth efficiency

Bandwidth efficiency for digital signatures with message recovery refers to the ratio of the
logarithm (base 2) of the size of the signing spaceMS to the logarithm (base 2) of the size of
MR, the image space of the redundancy function. Hence, the bandwidth efficiency is deter-
mined by the redundancyR. For RSA (and the Rabin digital signature scheme, §11.3.4), the
redundancy function specified by ISO/IEC 9796 (§11.3.5) takes k-bit messages and encodes
them to 2k-bit elements inMS from which a 2k-bit signature is formed. The bandwidth

2The choice of e = 216 + 1 is based on the fact that e is a prime number, and m̃e mod n can be computed
with only 16 modular squarings and one modular multiplication (see §14.6.1).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

438 Ch. 11 Digital Signatures

efficiency in this case is 12 . For example, with a modulus of size 1024 bits, the maximum
size of a message which can be signed is 512 bits.

(vii) System-wide parameters

Each entity must have a distinct RSA modulus; it is insecure to use a system-wide modulus
(see §8.2.2(vi)). The public exponent e can be a system-wide parameter, and is in many
applications (see Note 8.9(ii)).

(viii) Short vs. long messages

Suppose n is a 2k-bit RSA modulus which is used in Algorithm 11.19 to sign k-bit mes-
sages (i.e., the bandwidth efficiency is 12). Suppose entityAwishes to sign a kt-bit message
m. One approach is to partitionm into k-bit blocks such thatm = m1||m2|| · · · ||mt and
sign each block individually (but see Note 11.6 regarding why this is not recommended).
The bandwidth requirement for this is 2kt bits. Alternatively,A could hash messagem to a
bitstring of length l ≤ k and sign the hash value. The bandwidth requirement for this signa-
ture is kt+2k, where the term kt comes from sending the messagem. Since kt+2k ≤ 2kt
whenever t ≥ 2, it follows that the most bandwidth efficient method is to use RSA digital
signatures with appendix. For a message of size at most k-bits, RSA with message recovery
is preferred.

11.3.4 The Rabin public-key signature scheme

The Rabin public-key signature scheme is similar to RSA (Algorithm 11.19), but it uses an
even public exponent e. 3 For the sake of simplicity, it will be assumed that e = 2. The
signing spaceMS is Qn (the set of quadratic residues modulo n— see Definition 2.134)
and signatures are square roots of these. A redundancy functionR from the message space
M toMS is selected and is public knowledge.

Algorithm 11.25 describes the basic version of the Rabin public-key signature scheme.
A more detailed version (and one more useful in practice) is presented in Algorithm 11.30.

11.24 Algorithm Key generation for the Rabin public-key signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Generate two large distinct random primes p and q, each roughly the same size.
2. Compute n = pq.
3. A’s public key is n; A’s private key is (p, q).

11.25 Algorithm Rabin signature generation and verification

SUMMARY: entityA signs a messagem ∈ M. Any entityB can verifyA’s signature and
recover the messagem from the signature.

1. Signature generation. Entity A should do the following:

(a) Compute m̃ = R(m).
(b) Compute a square root s of m̃ mod n (using Algorithm 3.44).
(c) A’s signature form is s.

3Since p and q are distinct primes in an RSA modulus, φ = (p − 1)(q − 1) is even. In RSA, the public
exponent e must satisfy gcd(e, φ) = 1 and so must be odd.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 439

2. Verification. To verify A’s signature s and recover the messagem, B should:

(a) Obtain A’s authentic public key n.
(b) Compute m̃ = s2 mod n.
(c) Verify that m̃ ∈ MR; if not, reject the signature.
(d) Recoverm = R−1(m̃).

11.26 Example (Rabin signature generation with artificially small parameters)
Key generation. Entity A selects primes p = 7, q = 11, and computes n = 77. A’s
public key is n = 77; A’s private key is (p = 7, q = 11). The signing space isMS =
Q77 = {1, 4, 9, 15, 16, 23, 25, 36, 37, 53, 58, 60, 64, 67, 71}. For the sake of simplicity (but
see Note 11.27), takeM =MS and the redundancy functionR to be the identity map (i.e.,
m̃ = R(m) = m).
Signature generation. To sign a messagem = 23,A computesR(m) = m̃ = 23, and then
finds a square root of m̃modulo 77. If s denotes such a square root, then s ≡ ±3 (mod 7)
and s ≡ ±1 (mod 11), implying s = 10, 32, 45, or 67. The signature form is chosen to
be s = 45. (The signature could be any one of the four square roots.)
Signature verification. B computes m̃ = s2 mod 77 = 23. Since m̃ = 23 ∈ MR, B
accepts the signature and recoversm = R−1(m̃) = 23. �

11.27 Note (redundancy)

(i) As with the RSA signature scheme (Example 11.21), an appropriate choice of a re-
dundancy function R is crucial to the security of the Rabin signature scheme. For
example, suppose thatM = MS = Qn and R(m) = m for all m ∈ M. If an
adversary selects any integer s ∈ Z∗n and squares it to get m̃ = s2 mod n, then s is
a valid signature for m̃ and is obtained without knowledge of the private key. (Here,
the adversary has little control over what the message will be.) In this situation, ex-
istential forgery is trivial.

(ii) In most practical applications of digital signature schemes with message recovery, the
message spaceM consists of bitstrings of some fixed length. For the Rabin scheme,
determining a redundancy functionR is a challenging task. For example, if a message
m is a bitstring, R might assign it to the integer whose binary representation is the
message. There is, however, no guarantee that the resulting integer is a quadratic
residue modulo n, and so computing a square root might be impossible. One might
try to append a small number of random bits to m and apply R again in the hope
that R(m) ∈ Qn. On average, two such attempts would suffice, but a deterministic
method would be preferable.

Modified-Rabin signature scheme

To overcome the problem discussed in Note 11.27(ii), a modified version of the basic Rabin
signature scheme is provided. The technique presented is similar to that used in the ISO/IEC
9796 digital signature standard (§11.3.5). It provides a deterministic method for associating
messages with elements in the signing spaceMS , such that computing a square root (or
something close to it) is always possible. An understanding of this method will facilitate
the reading of §11.3.5.

11.28 Fact Let p and q be distinct primes each congruent to 3 modulo 4, and let n = pq.

(i) If gcd(x, n) = 1, then x(p−1)(q−1)/2 ≡ 1 (mod n).
(ii) If x ∈ Qn, then x(n−p−q+5)/8 mod n is a square root of x modulo n.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

440 Ch. 11 Digital Signatures

(iii) Let x be an integer having Jacobi symbol
(
x
n

)
= 1, and let d = (n − p− q + 5)/8.

Then

x2d mod n =

{
x, if x ∈ Qn,

n− x, if x 6∈ Qn.

(iv) If p 6≡ q (mod 8), then
(
2
n

)
= −1. Hence, multiplication of any integer x by 2 or

2−1 mod n reverses the Jacobi symbol of x. (Integers of the form n = pq where
p ≡ q ≡ 3 (mod 4) and p 6≡ q (mod 8) are sometimes called Williams integers.)

Algorithm 11.30 is a modified version of the Rabin digital signature scheme. Mes-
sages to be signed are fromMS = {m ∈ Zn : m ≡ 6 (mod 16)}. Notation is given
in Table 11.2. In practice, the redundancy function R should be more complex to prevent
existential forgery (see §11.3.5 for an example).

Symbol Term Description

M message space {m ∈ Zn : m ≤ b(n− 6)/16c}
MS signing space {m ∈ Zn : m ≡ 6 (mod 16)}
S signature space {s ∈ Zn : (s2 mod n) ∈MS}
R redundancy function R(m) = 16m+ 6 for allm ∈M
MR image of R {m ∈ Zn : m ≡ 6 (mod 16)}

Table 11.2: Definition of sets and functions for Algorithm 11.30.

11.29 Algorithm Key generation for the modified-Rabin signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Select random primes p ≡ 3 (mod 8), q ≡ 7 (mod 8) and compute n = pq.
2. A’s public key is n; A’s private key is d = (n− p− q + 5)/8.

11.30 Algorithm Modified-Rabin public-key signature generation and verification

SUMMARY: entityA signs a messagem ∈ M. Any entityB can verifyA’s signature and
recover the messagem from the signature.

1. Signature generation. Entity A should do the following:

(a) Compute m̃ = R(m) = 16m+ 6.
(b) Compute the Jacobi symbol J =

(
m̃
n

)
(using Algorithm 2.149).

(c) If J = 1 then compute s = m̃d mod n.
(d) If J = −1 then compute s = (m̃/2)d mod n. 4

(e) A’s signature form is s.

2. Verification. To verify A’s signature s and recover the messagem, B should:

(a) Obtain A’s authentic public key n.
(b) Computem′ = s2 mod n. (Note the original messagem itself is not required.)
(c) Ifm′ ≡ 6 (mod 8), take m̃ = m′.
(d) Ifm′ ≡ 3 (mod 8), take m̃ = 2m′.

4If J 6= 1 or −1 then J = 0, implying gcd(m̃, n) 6= 1. This leads to a factorization of n. In practice, the
probability that this will ever occur is negligible.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 441

(e) Ifm′ ≡ 7 (mod 8), take m̃ = n−m′.
(f) Ifm′ ≡ 2 (mod 8), take m̃ = 2(n−m′).
(g) Verify that m̃ ∈ MR (see Table 11.2); if not, reject the signature.
(h) Recoverm = R−1(m̃) = (m̃− 6)/16.

Proof that signature verification works. The signature generation phase signs either v = m̃
or v = m̃/2 depending upon which has Jacobi symbol 1. By Fact 11.28(iv), exactly one of
m̃, m̃/2 has Jacobi symbol 1. The value v that is signed is such that v ≡ 3 or 6 (mod 8).
By Fact 11.28(iii), s2 mod n = v or n − v depending on whether or not v ∈ Qn. Since
n ≡ 5 (mod 8), these cases can be uniquely distinguished.

11.31 Example (modified-Rabin signature scheme with artificially small parameters)
Key generation. A chooses p = 19, q = 31, and computes n = pq = 589 and d =
(n − p − q + 5)/8 = 68. A’s public key is n = 589, while A’s private key is d = 68.
The signing spaceMS is given in the following table, along with the Jacobi symbol of each
element.

m 6 22 54 70 86 102 118 134 150 166(
m
589

)
−1 1 −1 −1 1 1 1 1 −1 1

m 182 198 214 230 246 262 278 294 326 358(
m
589

)
−1 1 1 1 1 −1 1 −1 −1 −1

m 374 390 406 422 438 454 470 486 502 518(
m
589

)
−1 −1 −1 1 1 1 −1 −1 1 −1

m 534 550 566 582(
m
589

)
−1 1 −1 1

Signature generation. To sign a messagem = 12, A computes m̃ = R(12) = 198,
(
m̃
n

)
=(

198
589

)
= 1, and s = 19868 mod 589 = 102. A’s signature form = 12 is s = 102.

Signature verification. B computes m′ = s2 mod n = 1022 mod 589 = 391. Since
m′ ≡ 7 (mod 8), B takes m̃ = n − m′ = 589 − 391 = 198. Finally, B computes
m = R−1(m̃) = (198− 6)/16 = 12, and accepts the signature. �

11.32 Note (security of modified-Rabin signature scheme)

(i) When using Algorithm 11.30, one should never sign a value v having Jacobi symbol
−1, since this leads to a factorization of n. To see this, observe that y = v2d = s2

must have Jacobi symbol 1; but y2 ≡ (v2)2d ≡ v2 (mod n) by Fact 11.28(iii).
Therefore, (v−y)(v+y) ≡ 0 (mod n). Since v and y have opposite Jacobi symbols,
v 6≡ y (mod n) and thus gcd(v − y, n) = p or q.

(ii) Existential forgery is easily accomplished for the modified-Rabin scheme as it was
for the original Rabin scheme (see Note 11.27(i)). One only needs to find an s, 1 ≤
s ≤ n− 1, such that either s2 or n− s2 or 2s2 or 2(n− s2) mod n is congruent to
6 modulo 16. In any of these cases, s is a valid signature form′ = s2 mod n.

11.33 Note (performance characteristics of the Rabin signature scheme) Algorithm 11.25 re-
quires a redundancy function fromM toMS = Qn which typically involves computing
a Jacobi symbol (Algorithm 2.149). Signature generation then involves computing at least
one Jacobi symbol (see Note 11.27) and a square root modulo n. The square root compu-
tation is comparable to an exponentiation modulo n (see Algorithm 3.44). Since comput-
ing the Jacobi symbol is equivalent to a small number of modular multiplications, Rabin

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

442 Ch. 11 Digital Signatures

signature generation is not significantly more computationally intensive than an RSA sig-
nature generation with the same modulus size. Signature verification is very fast if e = 2;
it requires only one modular multiplication. Squaring can be performed slightly more ef-
ficiently than a general modular multiplication (see Note 14.18). This, too, compares fa-
vorably with RSA signature verification even when the RSA public exponent is e = 3.
The modified Rabin scheme (Algorithm 11.30) specifies the message space and redundancy
function. Signature generation requires the evaluation of a Jacobi symbol and one modular
exponentiation.

11.34 Note (bandwidth efficiency) The Rabin digital signature scheme is similar to the RSA sch-
eme with respect to bandwidth efficiency (see §11.3.3(vi)).

11.3.5 ISO/IEC 9796 formatting

ISO/IEC 9796 was published in 1991 by the International Standards Organization as the first
international standard for digital signatures. It specifies a digital signature process which
uses a digital signature mechanism providing message recovery.

The main features of ISO/IEC 9796 are: (i) it is based on public-key cryptography; (ii)
the particular signature algorithm is not specified but it must map k bits to k bits; (iii) it
is used to sign messages of limited length and does not require a cryptographic hash func-
tion; (iv) it provides message recovery (see Note 11.14); and (v) it specifies the message
padding, where required. Examples of mechanisms suitable for the standard are RSA (Al-
gorithm 11.19) and modified-Rabin (Algorithm 11.30). The specific methods used for
padding, redundancy, and truncation in ISO/IEC 9796 prevent various means to forge sig-
natures. Table 11.3 provides notation for this subsection.

Symbol Meaning

k the bitlength of the signature.
d the bitlength of the messagem to be signed;

it is required that d ≤ 8 b(k + 3)/16c.
z the number of bytes in the padded message; z = dd/8e.
r one more than the number of padding bits; r = 8z − d+ 1.
t the least integer such that a string of 2t bytes includes at least

k − 1 bits; t = d(k − 1)/16e.

Table 11.3: ISO/IEC 9796 notation.

11.35 Example (sample parameter values for ISO/IEC 9796) The following table lists sample
values of parameters in the signing process for a 150-bit message and a 1024-bit signature.

Parameter k (bits) d (bits) z (bytes) r (bits) t (bytes)
Value 1024 150 19 3 64

�

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 443

(i) Signature process for ISO/IEC 9796

The signature process consists of 5 steps as per Figure 11.5(a).

Padding

Extension

Redundancy

Truncating and forcing

Signature production

Padding

Extension

Redundancy

Truncating and forcing

Signature production

Message recovery

Signature accepted

Signature

Reject

Reject

Reject

YES

YES

NO

NO

Signature opening

Redundancy checking

Message

YES

Message

NO

(a) ISO/IEC 9796 signature process (b) ISO/IEC 9796 verification process

Figure 11.5: Signature and verification processes for ISO/IEC 9796.

1. padding. Ifm is the message, form the padded messageMP = 0r−1‖m where 1 ≤
r ≤ 8, such that the number of bits inMP is a multiple of 8. The number of bytes in
MP is z: MP = mz‖mz−1‖ · · · ‖m2‖m1 where eachmi is a byte.

2. message extension. The extended message, denoted ME , is obtained from MP by
repeated concatenation on the left of MP with itself until t bytes are in the string:
ME = ME t‖ME t−1‖ · · · ‖ME2‖ME 1 (eachME i is a byte). If t is not a multiple
of z, then the last bytes to be concatenated are a partial set of bytes fromMP , where
these bytes are consecutive bytes ofMP from the right. More precisely,ME i+1 =
m(imodz)+1 for 0 ≤ i ≤ t− 1.

3. message redundancy. Redundancy is added to ME to get the byte string MR =
MR2t‖MR2t−1‖ · · · ‖MR2‖MR1 as follows. MR is obtained by interleaving the t
bytes of ME with t redundant bytes and then adjusting byte MR2z of the resulting
string. More precisely,MR2i−1 = ME i andMR2i = S(ME i) for 1 ≤ i ≤ t, where
S(u) is called the shadow function of the byte u, and is defined as follows. If u =
u2‖u1whereu1 andu2 are nibbles (strings of bitlength 4), thenS(u) = π(u2)‖π(u1)
where π is the permutation

π =

(
0 1 2 3 4 5 6 7 8 9 A B C D E F
E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

)
.

(For brevity, π is written with nibbles represented by hexadecimal characters.) Fi-
nally,MR is obtained by replacingMR2z with r ⊕MR2z.5

4. truncation and forcing. Form the k-bit intermediate integer IR fromMR as follows:

(a) to the least significant k − 1 bits ofMR, append on the left a single bit 1;
(b) modify the least significant byte u2‖u1 of the result, replacing it by u1‖0110.

(This is done to ensure that IR ≡ 6 (mod 16).)

5The purpose of MR2z is to permit the verifier of a signature to recover the length d of the message. Since
d = 8z − r + 1, it suffices to know z and r. These values can be deduced fromMR.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

444 Ch. 11 Digital Signatures

5. signature production. A signature mechanism is used which maps k-bit integers to
k-bit integers (and allows message recovery). IR is signed using this mechanism; let
s denote the resulting signature.

11.36 Note (RSA, Rabin) ISO/IEC 9796 was intended for use with the RSA (Algorithm 11.19)6

and Rabin (Algorithm 11.25)7 digital signature mechanisms. For these particular schemes,
signature production is stated more explicitly. Let e be the public exponent for the RSA or
Rabin algorithms, n the modulus, and d the private exponent. First form the representative
elementRR which is: (i) IR if e is odd, or if e is even and the Jacobi symbol of IR (treated
as an integer) with respect to the modulusn is 1; (ii) IR/2 if e is even and the Jacobi symbol
of IR with respect to n is −1. The signature form is s = (RR)d mod n. ISO/IEC 9796
specifies that the signature s should be the lesser of (RR)d mod n andn−((RR)d mod n).

(ii) Verification process for ISO/IEC 9796

The verification process for an ISO/IEC 9796 digital signature can be separated into three
stages, as per Figure 11.5(b).

1. signature opening. Let s be the signature. Then the following steps are performed.

(a) Apply the public verification transformation to s to recover an integer IR′.
(b) Reject the signature if IR′ is not a string of k bits with the most significant bit

being a 1, or if the least significant nibble does not have value 0110.

2. message recovery. A stringMR′ of 2t bytes is constructed from IR′ by performing
the following steps.

(a) LetX be the least significant k − 1 bits of IR′.
(b) If u4‖u3‖u2‖0110 are the four least significant nibbles of X , replace the least

significant byte ofX by π−1(u4)‖u2.
(c) MR′ is obtained by paddingX with between 0 and 15 zero bits so that the re-

sulting string has 2t bytes.

The values z and r are computed as follows.

(a) From the 2t bytes ofMR′, compute the t sumsMR′2i⊕S(MR
′
2i−1), 1 ≤ i ≤ t.

If all sums are 0, reject the signature.
(b) Let z be the smallest value of i for whichMR′2i ⊕ S(MR

′
2i−1) 6= 0.

(c) Let r be the least significant nibble of the sum found in step (b). Reject the
signature if the hexadecimal value of r is not between 1 and 8.

FromMR′, the z-byte stringMP ′ is constructed as follows.

(a) MP ′i = MR
′
2i−1 for 1 ≤ i ≤ z.

(b) Reject the signature if the r − 1 most significant bits ofMP ′ are not all 0’s.
(c) LetM ′ be the 8z − r + 1 least significant bits ofMP ′.

3. redundancy checking. The signature s is verified as follows.

(a) FromM ′ construct a string MR′′ by applying the message padding, message
extension, and message redundancy steps of the signing process.

(b) Accept the signature if and only if the k − 1 least significant bits ofMR′′ are
equal to the k − 1 least significant bits ofMR′.

6Since steps 1 through 4 of the signature process describe the redundancy function R, m̃ in step 1a of Algo-
rithm 11.19 is taken to be IR.
7m̃ is taken to be IR in step 1 of Algorithm 11.25.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.3 RSA and related signature schemes 445

11.3.6 PKCS #1 formatting

Public-key cryptography standards (PKCS) are a suite of specifications which include tech-
niques for RSA encryption and signatures (see §15.3.6). This subsection describes the dig-
ital signature process specified in PKCS #1 (“RSA Encryption Standard”).

The digital signature mechanism in PKCS #1 does not use the message recovery feature
of the RSA signature scheme. It requires a hashing function (either MD2, or MD5 — see
Algorithm 9.51) and, therefore, is a digital signature scheme with appendix. Table 11.4 lists
notation used in this subsection. Capital letters refer to octet strings. IfX is an octet string,
thenXi is octet i counting from the left.

Symbol Meaning Symbol Meaning

k the length of n in octets (k ≥ 11) EB encryption block
n the modulus, 28(k−1) ≤ n < 28k ED encrypted data
p, q the prime factors of n octet a bitstring of length 8
e the public exponent ab hexadecimal octet value
d the private exponent BT block type
M message PS padding string

MD message digest S signature
MD′ comparative message digest ‖X‖ length ofX in octets

Table 11.4: PKCS #1 notation.

(i) PKCS #1 data formatting

The data is an octet string D, where ‖D‖ ≤ k−11. BT is a single octet whose hexadecimal
representation is either 00 or 01. PS is an octet string with ‖PS‖ = k−3−‖D‖. If BT = 00,
then all octets in PS are 00; if BT = 01, then all octets in PS are ff. The formatted data block
(called the encryption block) is EB = 00‖BT‖PS‖00‖D.

11.37 Note (data formatting rationale)

(i) The leading 00 block ensures that the octet string EB, when interpreted as an integer,
is less than the modulus n.

(ii) If the block type is BT = 00, then either D must begin with a non-zero octet or its
length must be known, in order to permit unambiguous parsing of EB.

(iii) If BT = 01, then unambiguous parsing is always possible.
(iv) For the reason given in (iii), and to thwart certain potential attacks on the signature

mechanism, BT = 01 is recommended.

11.38 Example (PKCS #1 data formatting for particular values) Suppose that n is a 1024-bit
modulus (so k = 128). If ‖D‖ = 20 octets, then ‖PS‖ = 105 octets, and ‖EB‖ = 128
octets. �

(ii) Signature process for PKCS #1

The signature process involves the steps as per Figure 11.6(a).
The input to the signature process is the message M, and the signer’s private exponent d
and modulus n.

1. message hashing. Hash the message M using the selected message-digest algorithm
to get the octet string MD.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

446 Ch. 11 Digital Signatures

encoding
Message digest

Message

Data block

RSA computation

Integer-to-octet
-string conversion

Signature

formatting

REJECT

Octet-string-to-integer

Integer-to-octet-string

RSA computation

Parsing

Data decoding

and
comparison

Message digesting

YES

YES

Signature accepted

YES

YES

REJECT

REJECT

REJECT

NO

NO

NO

NO

conversion

conversion

Message hashing

Signature and Message

(a) PKCS #1 signature process (b) PKCS #1 verification process

Octet-string-to-
integer conversion

Figure 11.6: Signature and verification processes for PKCS #1.

2. message digest encoding. MD and the hash algorithm identifier are combined into
an ASN.1 (abstract syntax notation) value and then BER-encoded (basic encoding
rules) to give an octet data string D.

3. data block formatting. With data string input D, use the data formatting from
§11.3.6(i) to form octet string EB.

4. octet-string-to-integer conversion. Let the octets of EB be EB1‖EB2‖ · · · ‖EBk. De-
fine ẼBi to be the integer whose binary representation is the octet EBi (least signifi-
cant bit is on the right). The integer representing EB ism =

∑k
i=1 2

8(k−i)ẼBi. 8

5. RSA computation. Compute s = md mod n.
6. integer-to-octet-string conversion. Convert s to an octet string ED = ED1‖ED2‖ · · ·
‖EDk, where the octets EDi satisfy s =

∑k
i=1 2

8(k−i)ẼDi. The signature is S = ED.

(iii) Verification process for PKCS #1

The verification process involves the steps as per Figure 11.6(b). The input to the verifica-
tion process is the message M, the signature S, the public exponent e, and modulus n.

1. octet-string-to-integer conversion.

(a) Reject S if the bitlength of S is not a multiple of 8.

8Since EB1 = 00 and n ≥ 28(k−1), then 0 ≤ m < n.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.4 Fiat-Shamir signature schemes 447

(b) Convert S to an integer s as in step 4 of the signature process.
(c) Reject the signature if s > n.

2. RSA computation. Computem = se mod n.

3. integer-to-octet-string conversion. Convertm to an octet string EB of length k octets
as in step 6 of the signature process.

4. parsing. Parse EB into a block type BT, a padding string PS, and the data D.

(a) Reject the signature if EB cannot be parsed unambiguously.
(b) Reject the signature if BT is not one of 00 or 01.
(c) Reject the signature if PS consists of < 8 octets or is inconsistent with BT.

5. data decoding.

(a) BER-decode D to get a message digest MD and a hash algorithm identifier.
(b) Reject the signature if the hashing algorithm identifier does not identify one of

MD2 or MD5.

6. message digesting and comparison.

(a) Hash the message M with the selected message-digest algorithm to get MD′.
(b) Accept the signature S on M if and only if MD′ = MD.

11.4 Fiat-Shamir signature schemes

As described in Note 10.30, any identification scheme involving a witness-challenge resp-
onse sequence can be converted to a signature scheme by replacing the random challenge of
the verifier with a one-way hash function. This section describes two signature mechanisms
which arise in this way. The basis for this methodology is the Fiat-Shamir identification
protocol (Protocol 10.24).

11.4.1 Feige-Fiat-Shamir signature scheme

The Feige-Fiat-Shamir signature scheme is a modification of an earlier signature scheme
of Fiat and Shamir, and requires a one-way hash function h : {0, 1}∗ −→ {0, 1}k for some
fixed positive integer k. Here {0, 1}k denotes the set of bitstrings of bitlength k, and {0, 1}∗

denotes the set of all bitstrings (of arbitrary bitlengths). The method provides a digital sig-
nature with appendix, and is a randomized mechanism.

11.39 Algorithm Key generation for the Feige-Fiat-Shamir signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Generate random distinct secret primes p, q and form n = pq.
2. Select a positive integer k and distinct random integers s1, s2, . . . , sk ∈ Z

∗
n.

3. Compute vj = s
−2
j mod n, 1 ≤ j ≤ k.

4. A’s public key is the k-tuple (v1, v2, . . . , vk) and the modulus n; A’s private key is
the k-tuple (s1, s2, . . . , sk).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

448 Ch. 11 Digital Signatures

11.40 Algorithm Feige-Fiat-Shamir signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random integer r, 1 ≤ r ≤ n− 1.
(b) Compute u = r2 mod n.
(c) Compute e = (e1, e2, . . . , ek) = h(m‖u); each ei ∈ {0, 1}.

(d) Compute s = r ·
∏k
j=1 s

ej
j mod n.

(e) A’s signature form is (e, s).

2. Verification. To verify A’s signature (e, s) onm, B should do the following:

(a) Obtain A’s authentic public key (v1, v2, . . . , vk) and n.

(b) Compute w = s2 ·
∏k
j=1 v

ej
j mod n.

(c) Compute e′ = h(m‖w).
(d) Accept the signature if and only if e = e′.

Proof that signature verification works.

w ≡ s2 ·
k∏
j=1

v
ej
j ≡ r

2 ·
k∏
j=1

s
2ej
j

k∏
j=1

v
ej
j ≡ r

2 ·
k∏
j=1

(s2jvj)
ej ≡ r2 ≡ u (mod n).

Hence, w = u and therefore e = e′.

11.41 Example (Feige-Fiat-Shamir signature generation with artificially small parameters)
Key generation. Entity A generates primes p = 3571, q = 4523, and computes n = pq =
16151633. The following table displays the selection of sj (A’s private key) and integers
vj (A’s public key) along with intermediate values s−1j .

j 1 2 3 4 5

sj 42 73 85 101 150

s−1j mod n 4999315 885021 6270634 13113207 11090788

vj = s
−2
j mod n 503594 4879739 7104483 1409171 6965302

Signature generation. Suppose h : {0, 1}∗ −→ {0, 1}5 is a hash function. A selects a ran-
dom integer r = 23181 and computes u = r2 mod n = 4354872. To sign messagem, A
evaluates e = h(m‖u) = 10110 (the hash value has been contrived for this example). A
forms s = rs1s3s4 mod n = (23181)(42)(85)(101) mod n = 7978909; the signature for
m is (e = 10110, s = 7978909).
Signature verification. B computes s2 mod n = 2926875 and v1v3v4 mod n = (503594)
(7104483)(1409171) mod n = 15668174. B then computes w = s2v1v3v4 mod n =
4354872. Since w = u, it follows that e′ = h(m‖w) = h(m‖u) = e and, hence, B ac-
cepts the signature. �

11.42 Note (security of Feige-Fiat-Shamir signature scheme)

(i) Unlike the RSA signature scheme (Algorithm 11.19), all entities may use the same
modulus n (cf. §8.2.2(vi)). In this scenario, a trusted third party (TTP) would need
to generate the primes p and q and also public and private keys for each entity.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.4 Fiat-Shamir signature schemes 449

(ii) The security of the Feige-Fiat-Shamir scheme is based on the intractability of com-
puting square roots modulo n (see §3.5.2). It has been proven to be secure against an
adaptive chosen-message attack, provided that factoring is intractable, h is a random
function, and the si’s are distinct.

11.43 Note (parameter selection and key storage requirements) If n is a t-bit integer, the private
key constructed in Algorithm 11.39 is kt bits in size. This may be reduced by selecting the
random values sj , 1 ≤ j ≤ k, as numbers of bitlength t′ < t; t′, however, should not be
chosen so small that guessing the sj is feasible. The public key is (k+1)t bits in size. For
example, if t = 768 and k = 128, then the private key requires 98304 bits and the public
key requires 99072 bits.

11.44 Note (identity-based Feige-Fiat-Shamir signatures) Suppose a TTP constructs primes p
and q and modulusn; the modulus is common to all entities in the system. Algorithm 11.39
can be modified so that the scheme is identity-based. Entity A’s bitstring IA contains in-
formation which identifies A. The TTP computes vj = f(IA‖j), 1 ≤ j ≤ k, where f is
a one-way hash function from {0, 1}∗ to Qn and j is represented in binary, and computes
a square root sj of v−1j modulo n, 1 ≤ j ≤ k. A’s public key is simply the identity infor-
mation IA, whileA’s private key (transported securely and secretly by the TTP to A) is the
k-tuple (s1, s2, . . . , sk). The functionsh, f , and the modulusn are system-wide quantities.

This procedure has the advantage that the public key generated in Algorithm 11.39
might be generated from a smaller quantity IA, potentially reducing the storage and trans-
mission cost. It has the disadvantages that the private keys of entities are known to the TTP,
and the modulus n is system-wide, making it a more attractive target.

11.45 Note (small prime variation of Feige-Fiat-Shamir signatures) This improvement aims to
reduce the size of the public key and increase the efficiency of signature verification. Unlike
the modification described in Note 11.44, each entity A generates its own modulus nA and
a set of k small primes v1, v2, . . . , vk ∈ Qn (each prime will require around 2 bytes to
represent). EntityA selects one of the square roots sj of v−1j modulo n for each j, 1 ≤ j ≤
k; these form the private key. The public key consists of nA and the values v1, v2, . . . , vk.
Verification of signatures proceeds more efficiently since computations are done with much
smaller numbers.

11.46 Note (performance characteristics of Feige-Fiat-Shamir signatures) With the RSA sch-
eme and a modulus of length t = 768, signature generation using naive techniques re-
quires, on average, 1152 modular multiplications (more precisely, 768 squarings and 384
multiplications). Signature generation for the Feige-Fiat-Shamir scheme (Algorithm 11.40)
requires, on average, k/2 modular multiplications. To sign a message with this scheme, a
modulus of length t = 768 and k = 128 requires, on average, 64 modular multiplications,
or less than 6% of the work required by a naive implementation of RSA. Signature verifi-
cation requires only one modular multiplication for RSA if the public exponent is e = 3,
and 64modular multiplications, on average, for Feige-Fiat-Shamir. For applications where
signature generation must be performed quickly and key space storage is not limited, the
Feige-Fiat-Shamir scheme (or DSA-like schemes — see §11.5) may be preferable to RSA.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

450 Ch. 11 Digital Signatures

11.4.2 GQ signature scheme

The Guillou-Quisquater (GQ) identification protocol (§10.4.3) can be turned into a digital
signature mechanism (Algorithm 11.48) if the challenge is replaced with a one-way hash
function. Let h : {0, 1}∗ −→ Zn be a hash function where n is a positive integer.

11.47 Algorithm Key generation for the GQ signature scheme

SUMMARY: each entity creates a public key (n, e, JA) and corresponding private key a.
Entity A should do the following:

1. Select random distinct secret primes p, q and form n = pq.
2. Select an integer e ∈ {1, 2, . . . , n− 1} such that gcd(e, (p − 1)(q − 1)) = 1. (See

Note 11.50 for guidance on selecting e.)
3. Select an integer JA, 1 < JA < n, which serves as an identifier for A and such that
gcd(JA, n) = 1. (The binary representation of JA could be used to convey informa-
tion about A such as name, address, driver’s license number, etc.)

4. Determine an integer a ∈ Zn such that JAae ≡ 1 (mod n) as follows:

4.1 Compute J−1A mod n.
4.2 Compute d1 = e−1 mod (p− 1) and d2 = e−1 mod (q − 1).
4.3 Compute a1 = (J

−1
A)

d1 mod p and a2 = (J
−1
A)

d2 mod q.
4.4 Find a solution a to the simultaneous congruences a ≡ a1 (mod p), a ≡ a2

(mod q).

5. A’s public key is (n, e, JA); A’s private key is a.

11.48 Algorithm GQ signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random integer k and compute r = ke mod n.
(b) Compute l = h(m‖r).
(c) Compute s = kal mod n.
(d) A’s signature form is the pair (s, l).

2. Verification. To verify A’s signature (s, l) onm, B should do the following:

(a) Obtain A’s authentic public key (n, e, JA).
(b) Compute u = seJA

l mod n and l′ = h(m‖u).
(c) Accept the signature if and only if l = l′.

Proof that signature verification works. Note that u ≡ seJA
l ≡ (kal)eJA

l ≡ ke(aeJA)l

≡ ke ≡ r (mod n). Hence, u = r and therefore l = l′.

11.49 Example (GQ signature generation with artificially small parameters)
Key generation. EntityA chooses primes p = 20849, q = 27457, and computes n = pq =
572450993. A selects an integer e = 47, an identifier JA = 1091522, and solves the con-
gruence JAae ≡ 1 (mod n) to get a = 214611724. A’s public key is (n = 572450993,
e = 47, JA = 1091522), while A’s private key is a = 214611724.
Signature generation. To sign the messagem = 1101110001,A selects a random integer

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 451

k = 42134 and computes r = ke mod n = 297543350. A then computes l = h(m‖r) =
2713833 (the hash value has been contrived for this example) and s = kal mod n =
(42134)2146117242713833 mod n = 252000854. A’s signature for m is the pair (s =
252000854, l = 2713833).
Signature verification. B computes se mod n = 25200085447 mod n = 398641962,
JA
l mod n = 10915222713833 mod n = 110523867, and finally u = seJA

l mod n =
297543350. Since u = r, l′ = h(m‖u) = h(m‖r) = l, and so B accepts the signature. �

11.50 Note (security of GQ signature scheme) In Algorithm 11.47, emust be sufficiently large to
exclude the possibility of forgery based on the birthday paradox (see §2.1.5). The potential
attack proceeds along the following lines. The adversary selects a messagem and computes
l = h(m‖JA

t) for sufficiently many values of t until l ≡ t (mod e); this is expected to
occur within O(

√
e) trials. Having determined such a pair (l, t), the adversary determines

an integer x such that t = xe + l and computes s = JA
x mod n. Observe that seJA

l ≡
(JA

x)eJA
l ≡ JA

xe+l ≡ JA
t (mod n), and, hence, h(m‖JA

t) = l. Thus, (s, l) is a valid
(forged) signature for messagem.

11.51 Note (parameter selection) Current methods (as of 1996) for integer factorization suggest
that a modulus n of size at least 768 bits is prudent. Note 11.50 suggests that e should be at
least 128 bits in size. Typical values for the outputs of secure hash functions are 128 or 160
bits. With a 768-bit modulus and a 128-bit e, the public key for the GQ scheme is 896+ u
bits in size, where u is the number of bits needed to represent JA. The private key a is 768
bits in size.

11.52 Note (performance characteristics of GQ signatures) Signature generation for GQ (Algo-
rithm 11.48) requires two modular exponentiations and one modular multiplication. Using a
768-bit modulus n, a 128-bit value e, and a hash function with a 128-bit output l, signature
generation (using naive techniques for exponentiation) requires on average 384 modular
multiplications (128 squarings and 64 multiplications for each of e and l). Signature veri-
fication requires a similar amount of work. Compare this with RSA (naively 1152 modular
multiplications) and Feige-Fiat-Shamir (64 modular multiplications) for signature genera-
tion (see Note 11.46). GQ is computationally more intensive than Feige-Fiat-Shamir but
requires significantly smaller key storage space (see Note 11.51).

11.53 Note (message recovery variant of GQ signatures) Algorithm 11.48 can be modified as
follows to provide message recovery. Let the signing space beMS = Zn, and let m ∈
MS . In signature generation, select a random k such that gcd(k, n) = 1 and compute
r = ke mod n and l = mr mod n. The signature is s = kal mod n. Verification gives
seJA

l ≡ keaelJA
l ≡ ke ≡ r (mod n). Message m is recovered from lr−1 mod n. As

for all digital signature schemes with message recovery, a suitable redundancy function R
is required to guard against existential forgery.

11.5 The DSA and related signature schemes

This section presents the Digital Signature Algorithm (DSA) and several related signature
schemes. Most of these are presented overZ∗p for some large prime p, but all of these mech-
anisms can be generalized to any finite cyclic group; this is illustrated explicitly for the El-

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

452 Ch. 11 Digital Signatures

Gamal signature scheme in §11.5.2. All of the methods discussed in this section are ran-
domized digital signature schemes (see Definition 11.2). All give digital signatures with
appendix and can be modified to provide digital signatures with message recovery (see
Note 11.14). A necessary condition for the security of all of the signature schemes described
in this section is that computing logarithms in Z∗p be computationally infeasible. This con-
dition, however, is not necessarily sufficient for the security of these schemes; analogously,
it remains unproven that RSA signatures are secure even if factoring integers is hard.

11.5.1 The Digital Signature Algorithm (DSA)

In August of 1991, the U.S. National Institute of Standards and Technology (NIST) pro-
posed a digital signature algorithm (DSA). The DSA has become a U.S. Federal Informa-
tion Processing Standard (FIPS 186) called the Digital Signature Standard (DSS), and is the
first digital signature scheme recognized by any government. The algorithm is a variant of
the ElGamal scheme (§11.5.2), and is a digital signature scheme with appendix.

The signature mechanism requires a hash function h : {0, 1}∗ −→ Zq for some inte-
ger q. The DSS explicitly requires use of the Secure Hash Algorithm (SHA-1), given by
Algorithm 9.53.

11.54 Algorithm Key generation for the DSA

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Select a prime number q such that 2159 < q < 2160.
2. Choose t so that 0 ≤ t ≤ 8, and select a prime number p where 2511+64t < p <
2512+64t, with the property that q divides (p− 1).

3. (Select a generator α of the unique cyclic group of order q in Z∗p.)

3.1 Select an element g ∈ Z∗p and compute α = g(p−1)/q mod p.
3.2 If α = 1 then go to step 3.1.

4. Select a random integer a such that 1 ≤ a ≤ q − 1.
5. Compute y = αa mod p.
6. A’s public key is (p, q, α, y); A’s private key is a.

11.55 Note (generation of DSA primes p and q) In Algorithm 11.54 one must select the prime q
first and then try to find a prime p such that q divides (p−1). The algorithm recommended
by the DSS for accomplishing this is Algorithm 4.56.

11.56 Algorithm DSA signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random secret integer k, 0 < k < q.
(b) Compute r = (αk mod p) mod q (e.g., using Algorithm 2.143).
(c) Compute k−1 mod q (e.g., using Algorithm 2.142).
(d) Compute s = k−1{h(m) + ar} mod q.
(e) A’s signature form is the pair (r, s).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 453

2. Verification. To verify A’s signature (r, s) onm, B should do the following:

(a) Obtain A’s authentic public key (p, q, α, y).
(b) Verify that 0 < r < q and 0 < s < q; if not, then reject the signature.
(c) Compute w = s−1 mod q and h(m).
(d) Compute u1 = w · h(m) mod q and u2 = rw mod q.
(e) Compute v = (αu1yu2 mod p) mod q.
(f) Accept the signature if and only if v = r.

Proof that signature verification works. If (r, s) is a legitimate signature of entity A on
message m, then h(m) ≡ −ar + ks (mod q) must hold. Multiplying both sides of this
congruence by w and rearranging gives w · h(m) + arw ≡ k (mod q). But this is simply
u1 + au2 ≡ k (mod q). Raising α to both sides of this equation yields (αu1yu2 mod
p) mod q = (αk mod p) mod q. Hence, v = r, as required.

11.57 Example (DSA signature generation with artificially small parameters)
Key generation. A selects primes p = 124540019 and q = 17389 such that q divides (p−
1); here, (p− 1)/q = 7162. A selects a random element g = 110217528 ∈ Z∗p and com-
putes α = g7162 mod p = 10083255. Since α 6= 1, α is a generator for the unique cyclic
subgroup of order q in Z∗p. A next selects a random integer a = 12496 satisfying 1 ≤ a ≤
q − 1, and computes y = αa mod p = 1008325512496 mod 124540019 = 119946265.
A’s public key is (p = 124540019, q = 17389, α = 10083255, y = 119946265), while
A’s private key is a = 12496.
Signature generation. To signm, A selects a random integer k = 9557, and computes r =
(αk mod p) mod q = (100832559557 mod 124540019) mod 17389 = 27039929 mod
17389 = 34. A then computesk−1 mod q = 7631,h(m) = 5246 (the hash value has been

contrived for this example), and finally s = (7631){5246+(12496)(34)}mod q = 13049.
The signature form is the pair (r = 34, s = 13049).
Signature verification. B computes w = s−1 mod q = 1799, u1 = w · h(m) mod
q = (5246)(1799) mod 17389 = 12716, and u2 = rw mod q = (34)(1799) mod
17389 = 8999. B then computes v = (αu1yu2 mod p) mod q = (1008325512716 ·
1199462658999 mod 124540019) mod 17389 = 27039929 mod 17389 = 34. Since v =
r, B accepts the signature. �

11.58 Note (security of DSA) The security of the DSA relies on two distinct but related discrete
logarithm problems. One is the logarithm problem inZ∗p where the powerful index-calculus
methods apply; the other is the logarithm problem in the cyclic subgroup of order q, where
the best current methods run in “square-root” time. For further discussion, see §3.6.6. Since
the DSA is a special case of ElGamal signatures (§11.5.2) with respect to the equation for
s, security considerations for the latter are pertinent here (see Note 11.66).

11.59 Note (recommended parameter sizes) The size of q is fixed by Algorithm 11.54 (as per
FIPS 186) at 160 bits, while the size of p can be any multiple of 64 between 512 and 1024
bits inclusive. A 512-bit prime p provides marginal security against a concerted attack. As
of 1996, a modulus of at least 768 bits is recommended. FIPS 186 does not permit primes
p larger than 1024 bits.

11.60 Note (performance characteristics of the DSA) For concreteness, suppose p is a 768-bit
integer. Signature generation requires one modular exponentiation, taking on average (us-
ing naive techniques for exponentiation) 240 modular multiplications, one modular inverse

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

454 Ch. 11 Digital Signatures

with a 160-bit modulus, two 160-bit modular multiplications, and one addition. The 160-bit
operations are relatively minor compared to the exponentiation. The DSA has the advantage
that the exponentiation can be precomputed and need not be done at the time of signature
generation. By comparison, no precomputation is possible with the RSA signature scheme.
The major portion of the work for signature verification is two exponentiations modulo p,
each to 160-bit exponents. On average, these each require 240 modular multiplications or
480 in total. Some savings can be realized by doing the two exponentiations simultaneously
(cf. Note 14.91); the cost, on average, is then 280 modular multiplications.

11.61 Note (system-wide parameters) It is not necessary for each entity to select its own primes
p and q. The DSS permits p, q, and α to be system-wide parameters. This does, however,
present a more attractive target for an adversary.

11.62 Note (probability of failure) Verification requires the computation of s−1 mod q. If s = 0,
then s−1 does not exist. To avoid this situation, the signer may check that s 6= 0; but if s is
assumed to be a random element inZq , then the probability that s = 0 is (12)

160. In practice,
this is extremely unlikely ever to occur. The signer may also check that r 6= 0. If the signer
detects that either r = 0 or s = 0, a new value of k should be generated.

11.5.2 The ElGamal signature scheme

The ElGamal signature scheme is a randomized signature mechanism. It generates digital
signatures with appendix on binary messages of arbitrary length, and requires a hash func-
tion h : {0, 1}∗ −→ Zp where p is a large prime number. The DSA (§11.5.1) is a variant of
the ElGamal signature mechanism.

11.63 Algorithm Key generation for the ElGamal signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Generate a large random prime p and a generator α of the multiplicative group Z∗p
(using Algorithm 4.84).

2. Select a random integer a, 1 ≤ a ≤ p− 2.
3. Compute y = αa mod p (e.g., using Algorithm 2.143).
4. A’s public key is (p, α, y); A’s private key is a.

11.64 Algorithm ElGamal signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random secret integer k, 1 ≤ k ≤ p− 2, with gcd(k, p− 1) = 1.
(b) Compute r = αk mod p (e.g., using Algorithm 2.143).
(c) Compute k−1 mod (p− 1) (e.g., using Algorithm 2.142).
(d) Compute s = k−1{h(m)− ar} mod (p− 1).
(e) A’s signature form is the pair (r, s).

2. Verification. To verify A’s signature (r, s) onm, B should do the following:

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 455

(a) Obtain A’s authentic public key (p, α, y).
(b) Verify that 1 ≤ r ≤ p− 1; if not, then reject the signature.
(c) Compute v1 = yrrs mod p.
(d) Compute h(m) and v2 = αh(m) mod p.
(e) Accept the signature if and only if v1 = v2.

Proof that signature verification works. If the signature was generated byA, then s ≡ k−1

{h(m)−ar} (mod p−1). Multiplying both sides by k givesks ≡ h(m)−ar (mod p−1),
and rearranging yields h(m) ≡ ar + ks (mod p − 1). This implies αh(m) ≡ αar+ks ≡
(αa)rrs (mod p). Thus, v1 = v2, as required.

11.65 Example (ElGamal signature generation with artificially small parameters)
Key generation. A selects the prime p = 2357 and a generator α = 2 of Z∗2357. A chooses
the private key a = 1751 and computes y = αa mod p = 21751 mod 2357 = 1185. A’s
public key is (p = 2357, α = 2, y = 1185).
Signature generation. For simplicity, messages will be integers from Zp and h(m) = m
(i.e., for this example only, take h to be the identity function). To sign the message m =
1463, A selects a random integer k = 1529, computes r = αk mod p = 21529 mod
2357 = 1490, and k−1 mod (p− 1) = 245. Finally, A computes s = 245{1463 −
1751(1490)}mod 2356 = 1777. A’s signature form = 1463 is the pair (r = 1490, s =
1777).
Signature verification. B computes v1 = 11851490 · 14901777 mod 2357 = 1072, h(m) =
1463, and v2 = 21463 mod 2357 = 1072. B accepts the signature since v1 = v2. �

11.66 Note (security of ElGamal signatures)

(i) An adversary might attempt to forge A’s signature (per Algorithm 11.64) on m by
selecting a random integer k and computing r = αk mod p. The adversary must
then determine s = k−1{h(m)−ar} mod (p− 1). If the discrete logarithm problem
is computationally infeasible, the adversary can do no better than to choose an s at
random; the success probability is only 1p , which is negligible for large p.

(ii) A different k must be selected for each message signed; otherwise, the private key
can be determined with high probability as follows. Suppose s1 = k−1{h(m1) −
ar} mod (p− 1) and s2 = k−1{h(m2) − ar} mod (p− 1). Then (s1 − s2)k ≡
(h(m1) − h(m2)) (mod p − 1). If s1 − s2 6≡ 0 (mod p − 1), then k = (s1 −
s2)
−1(h(m1)− h(m2)) mod (p− 1). Once k is known, a is easily found.

(iii) If no hash function h is used, the signing equation is s = k−1{m−ar} mod (p− 1).
It is then easy for an adversary to mount an existential forgery attack as follows. Se-
lect any pair of integers (u, v)with gcd(v, p−1) = 1. Compute r = αuyv mod p =
αu+av mod p and s = −rv−1 mod (p− 1). The pair (r, s) is a valid signature for
the messagem = su mod (p− 1), since (αmα−ar)s

−1
= αuyv = r.

(iv) Step 2b in Algorithm 11.64 requires the verifier to check that 0 < r < p. If this check
is not done, then an adversary can sign messages of its choice provided it has one valid
signature created by entity A, as follows. Suppose that (r, s) is a signature for mes-
sage m produced by A. The adversary selects a messagem′ of its choice and com-
putesh(m′) andu = h(m′)·[h(m)]−1 mod (p−1) (assuming [h(m)]−1 mod (p−1)
exists). It then computes s′ = su mod (p−1) and r′ such that r′ ≡ ru (mod p−1)
and r′ ≡ r (mod p). The latter is always possible by the Chinese Remainder The-
orem (Fact 2.120). The pair (r′, s′) is a signature for message m′ which would be
accepted by the verification algorithm (Algorithm 11.64) if step 2b were ignored.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

456 Ch. 11 Digital Signatures

11.67 Note (security based on parameter selection)

(i) (index-calculus attack) The prime p should be sufficiently large to prevent efficient
use of the index-calculus methods (§3.6.5).

(ii) (Pohlig-Hellman attack) p− 1 should be divisible by a prime number q sufficiently
large to prevent a Pohlig-Hellman discrete logarithm attack (§3.6.4).

(iii) (weak generators) Suppose that p ≡ 1 (mod 4) and the generator α satisfies the
following conditions:

(a) α divides (p− 1); and
(b) computing logarithms in the subgroupS of orderα inZ∗p can be efficiently done

(for example, if a Pohlig-Hellman attack (§3.6.4) can be mounted in S).

It is then possible for an adversary to construct signatures (without knowledge ofA’s
private key) which will be accepted by the verification algorithm (step 2 of Algo-
rithm 11.64). To see this, suppose that p−1 = αq. To sign a messagem the adversary
does the following:

(a) Compute t = (p− 3)/2 and set r = q.
(b) Determine z such that αqz ≡ yq (mod p) where y is A’s public key. (This is

possible since αq and yq are elements of S and αq is a generator of S.)
(c) Compute s = t · {h(m)− qz} mod (p− 1).
(d) (r, s) is a signature onm which will be accepted by step 2 of Algorithm 11.64.

This attack works because the verification equation rsyr ≡ αh(m) (mod p) is
satisfied. To see this, first observe that αq ≡ −1 (mod p), α ≡ −q−1 (mod p),
and that q(p−1)/2 ≡ −1 (mod p). (The latter congruence follows from the fact that
α is a generator of Z∗p and q ≡ −α−1 (mod p).) From these, one deduces that qt =
q(p−1)/2q−1≡ −q−1 ≡ α (mod p).Now rsyr = (qt)[h(m)−qz]yq ≡ αh(m)α−qzyq

≡ αh(m)y−qyq = αh(m) (mod p). Notice in the case where α = 2 is a generator
that the conditions specified in (iii) above are trivially satisfied.
The attack can be avoided ifα is selected as a generator for a subgroup ofZ∗p of prime
order rather than a generator for Z∗p itself.

11.68 Note (performance characteristics of ElGamal signatures)

(i) Signature generation by Algorithm 11.64 is relatively fast, requiring one modu-
lar exponentiation (αk mod p), the extended Euclidean algorithm (for computing
k−1 mod (p− 1)), and two modular multiplications. (Modular subtraction is neg-
ligible when compared with modular multiplication.) The exponentiation and appli-
cation of the extended Euclidean algorithm can be done off-line, in which case sig-
nature generation (in instances where precomputation is possible) requires only two
(on-line) modular multiplications.

(ii) Signature verification is more costly, requiring three exponentiations. Each exponen-
tiation (using naive techniques) requires 32dlg pe modular multiplications, on aver-
age, for a total cost of 92dlg pe multiplications. The computing costs can be reduced
by modifying the verification slightly. Compute v1 = α−h(m)yrrs mod p, and ac-
cept the signature as valid if and only if v1 = 1. Now, v1 can be computed more
efficiently by doing the three exponentiations simultaneously (see Note 14.91); the
total cost is now about 158 dlg pemodular multiplications, almost 2.5 times as cost ef-
ficient as before.

(iii) Signature verification calculations are all performed modulo p, while signature gen-
eration calculations are done modulo p and modulo (p− 1).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 457

11.69 Note (recommended parameter sizes) Given the latest progress on the discrete logarithm
problem in Z∗p (§3.6), a 512-bit modulus p provides only marginal security from concerted
attack. As of 1996, a modulusp of at least 768 bits is recommended. For long-term security,
1024-bit or larger moduli should be used.

11.70 Note (system-wide parameters) All entities may elect to use the same prime number p
and generator α, in which case p and α are not required to be part of the public key (cf.
Note 11.61).

(i) Variations of the ElGamal scheme

Many variations of the basic ElGamal signature scheme (Algorithm 11.64) have been pro-
posed. Most of these alter what is commonly referred to as the signing equation (given
in step 1d of Algorithm 11.64). After suitable rearrangement, this signing equation can
be written as u = av + kw mod (p− 1) where u = h(m), v = r, and w = s (i.e.,
h(m) = ar + ks mod (p− 1)). Other signing equations can be obtained by permitting
u, v, and w to take on the values s, r, and h(m) in different orders. Table 11.5 lists the 6
possibilities.

u v w Signing equation Verification

1 h(m) r s h(m) = ar + ks αh(m) = (αa)rrs

2 h(m) s r h(m) = as+ kr αh(m) = (αa)srr

3 s r h(m) s = ar + kh(m) αs = (αa)rrh(m)

4 s h(m) r s = ah(m) + kr αs = (αa)h(m)rr

5 r s h(m) r = as+ kh(m) αr = (αa)srh(m)

6 r h(m) s r = ah(m) + ks αr = (αa)h(m)rs

Table 11.5: Variations of the ElGamal signing equation. Signing equations are computed modulo
(p− 1); verification is done modulo p.

11.71 Note (comparing variants of the ElGamal signature scheme)

(i) Some of the signing equations listed in Table 11.5 are more efficient to compute than
the original ElGamal equation in Algorithm 11.64. For example, equations (3) and
(4) of Table 11.5 do not require the computation of an inverse to determine the sig-
nature s. Equations (2) and (5) require the signer to compute a−1 mod (p− 1), but
this fixed quantity need only be computed once.

(ii) Verification equations (2) and (4) involve the expression rr. Part of the security of
signature schemes based on these signing equations is the intractability of finding so-
lutions to an expression of the form xx ≡ c (mod p) for fixed c. This problem ap-
pears to be intractable for large values of p, but has not received the same attention
as the discrete logarithm problem.

(ii) The generalized ElGamal signature scheme

The ElGamal digital signature scheme, originally described in the setting of the multiplica-
tive group Z∗p, can be generalized in a straightforward manner to work in any finite abelian
group G. The introductory remarks for §8.4.2 are pertinent to the algorithm presented in
this section. Algorithm 11.73 requires a cryptographic hash function h : {0, 1}∗ −→ Zn

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

458 Ch. 11 Digital Signatures

where n is the number of elements in G. It is assumed that each element r ∈ G can be
represented in binary so that h(r) is defined.9

11.72 Algorithm Key generation for the generalized ElGamal signature scheme

SUMMARY: each entity selects a finite groupG; generator of G; public and private keys.
Each entity A should do the following:

1. Select an appropriate cyclic group G of order n, with generator α. (Assume that G
is written multiplicatively.)

2. Select a random secret integera, 1 ≤ a ≤ n−1. Compute the group element y = αa.
3. A’s public key is (α, y), together with a description of how to multiply elements in
G; A’s private key is a.

11.73 Algorithm Generalized ElGamal signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random secret integer k, 1 ≤ k ≤ n− 1, with gcd(k, n) = 1.
(b) Compute the group element r = αk.
(c) Compute k−1 mod n.
(d) Compute h(m) and h(r).
(e) Compute s = k−1{h(m)− ah(r)} mod n.
(f) A’s signature form is the pair (r, s).

2. Verification. To verify A’s signature (r, s) onm, B should do the following:

(a) Obtain A’s authentic public key (α, y).
(b) Compute h(m) and h(r).
(c) Compute v1 = yh(r) · rs.
(d) Compute v2 = αh(m).
(e) Accept the signature if and only if v1 = v2.

11.74 Example (generalized ElGamal signatures with artificially small parameters)
Key generation. Consider the finite field F25 constructed from the irreducible polynomial
f(x) = x5 + x2 + 1 over F2. (See Example 2.231 for examples of arithmetic in the field
F24 .) The elements of this field are the 31 binary 5-tuples displayed in Table 11.6, along
with 00000. The elementα = (00010) is a generator forG = F∗25 , the multiplicative cyclic
group of the field. The order of this groupG is n = 31. Let h : {0, 1}∗ −→ Z31 be a hash
function. Entity A selects the private key a = 19 and computes y = αa = (00010)19 =
(00110). A’s public key is (α = (00010), y = (00110)).
Signature generation. To sign the message m = 10110101, A selects a random integer
k = 24, and computes r = α24 = (11110) and k−1 mod 31 = 22. A then computes
h(m) = 16 and h(r) = 7 (the hash values have been contrived for this example) and s =
22 · {16− (19)(7)}mod 31 = 30. A’s signature for messagem is (r = (11110), s = 30).
Signature verification. B computes h(m) = 16, h(r) = 7, v1 = yh(r)rs = (00110)7·
(11110)30 = (11011), and v2 = αh(m) = α16 = (11011). B accepts the signature since
v1 = v2. �
9More precisely, one would define a function f : G −→ {0, 1}∗ and write h(f(r)) instead of h(r).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 459

i αi

0 00001

1 00010

2 00100

3 01000

4 10000

5 00101

6 01010

7 10100

i αi

8 01101

9 11010

10 10001

11 00111

12 01110

13 11100

14 11101

15 11111

i αi

16 11011

17 10011

18 00011

19 00110

20 01100

21 11000

22 10101

23 01111

i αi

24 11110

25 11001

26 10111

27 01011

28 10110

29 01001

30 10010

Table 11.6: The elements of F25 as powers of a generator α.

11.75 Note (security of generalized ElGamal) Much of the security of Algorithm 11.73 relies on
the intractability of the discrete logarithm problem in the group G (see §3.6). Most of the
security comments in Note 11.66 apply to the generalized ElGamal scheme.

11.76 Note (signing and verification operations) Signature generation requires computations in
the group G (i.e., r = αk) and computations in Zn. Signature verification only requires
computations in the groupG.

11.77 Note (generalized ElGamal using elliptic curves) One of the most promising implemen-
tations of Algorithm 11.73 is the case where the finite abelian groupG is constructed from
the set of points on an elliptic curve over a finite field Fq . The discrete logarithm problem
in groups of this type appears to be more difficult than the discrete logarithm problem in the
multiplicative group of a finite field Fq . This implies that q can be chosen smaller than for
corresponding implementations in groups such as G = F∗q .

11.5.3 The Schnorr signature scheme

Another well-known variant of the ElGamal scheme (Algorithm 11.64) is the Schnorr sig-
nature scheme. As with the DSA (Algorithm 11.56), this technique employs a subgroup of
order q in Z∗p, where p is some large prime number. The method also requires a hash func-
tion h : {0, 1}∗ −→ Zq . Key generation for the Schnorr signature scheme is the same as
DSA key generation (Algorithm 11.54), except that there are no constraints on the sizes of
p and q.

11.78 Algorithm Schnorr signature generation and verification

SUMMARY: entityA signs a binary messagem of arbitrary length. Any entityB can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Select a random secret integer k, 1 ≤ k ≤ q − 1.
(b) Compute r = αk mod p, e = h(m‖r), and s = ae+ k mod q.
(c) A’s signature form is the pair (s, e).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

460 Ch. 11 Digital Signatures

2. Verification. To verify A’s signature (s, e) onm, B should do the following:

(a) Obtain A’s authentic public key (p, q, α, y).
(b) Compute v = αsy−e mod p and e′ = h(m‖v).
(c) Accept the signature if and only if e′ = e.

Proof that signature verification works. If the signature was created byA, then v ≡ αsy−e

≡ αsα−ae ≡ αk ≡ r (mod p). Hence, h(m‖v) = h(m‖r) and e′ = e.

11.79 Example (Schnorr’s signature scheme with artificially small parameters)
Key generation. A selects primes p = 129841 and q = 541; here, (p − 1)/q = 240. A
then selects a random integer g = 26346 ∈ Z∗p and computes α = 26346240 mod p = 26.
Since α 6= 1, α generates the unique cyclic subgroup of order 541 in Z∗p. A then selects
the private key a = 423 and computes y = 26423 mod p = 115917. A’s public key is
(p = 129841, q = 541, α = 26, y = 115917).
Signature generation. To sign the message m = 11101101, A selects a random number
k = 327 such that 1 ≤ k ≤ 540, and computes r = 26327 mod p = 49375 and e =
h(m‖r) = 155 (the hash value has been contrived for this example). Finally, A computes
s = 423 · 155 + 327 mod 541 = 431. The signature form is (s = 431, e = 155).
Signature verification. B computes v = 26431 · 115917−155 mod p = 49375 and e′ =
h(m‖v) = 155. B accepts the signature since e = e′. �

11.80 Note (performance characteristics of the Schnorr scheme) Signature generation in Algo-
rithm 11.78 requires one exponentiation modulo p and one multiplication modulo q. The
exponentiation modulo p could be done off-line. Depending on the hash algorithm used,
the time to compute h(m‖r) should be relatively small. Verification requires two exponen-
tiations modulo p. These two exponentiations can be computed by Algorithm 14.88 at a
cost of about 1.17 exponentiations. Using the subgroup of order q does not significantly
enhance computational efficiency over the ElGamal scheme of Algorithm 11.64, but does
provide smaller signatures (for the same level of security) than those generated by the El-
Gamal method.

11.5.4 The ElGamal signature scheme with message recovery

The ElGamal scheme and its variants (§11.5.2) discussed so far are all randomized digital
signature schemes with appendix (i.e., the message is required as input to the verification
algorithm). In contrast, the signature mechanism of Algorithm 11.81 has the feature that the
message can be recovered from the signature itself. Hence, this ElGamal variant provides
a randomized digital signature with message recovery.

For this scheme, the signing space isMS = Z
∗
p, p a prime, and the signature space is

S = Zp × Zq , q a prime, where q divides (p − 1). Let R be a redundancy function from
the set of messagesM toMS (see Table 11.1). Key generation for Algorithm 11.81 is the
same as DSA key generation (Algorithm 11.54), except that there are no constraints on the
sizes of p and q.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.5 The DSA and related signature schemes 461

11.81 Algorithm Nyberg-Rueppel signature generation and verification

SUMMARY: entityA signs a messagem ∈ M. Any entityB can verifyA’s signature and
recover the messagem from the signature.

1. Signature generation. Entity A should do the following:

(a) Compute m̃ = R(m).
(b) Select a random secret integer k, 1 ≤ k ≤ q−1, and compute r = α−k mod p.
(c) Compute e = m̃r mod p.
(d) Compute s = ae+ k mod q.
(e) A’s signature form is the pair (e, s).

2. Verification. To verify A’s signature (e, s) onm, B should do the following:

(a) Obtain A’s authentic public key (p, q, α, y).
(b) Verify that 0 < e < p; if not, reject the signature.
(c) Verify that 0 ≤ s < q; if not, reject the signature.
(d) Compute v = αsy−e mod p and m̃ = ve mod p.
(e) Verify that m̃ ∈ MR; if m̃ 6∈ MR then reject the signature.
(f) Recoverm = R−1(m̃).

Proof that signature verification works. If A created the signature, then v ≡ αsy−e ≡
αs−ae ≡ αk (mod p). Thus ve ≡ αkm̃α−k ≡ m̃ (mod p), as required.

11.82 Example (Nyberg-Rueppel signature generation with artificially small parameters)
Key generation. Entity A selects primes p = 1256993 and q = 3571, where q divides
(p − 1); here, (p − 1)/q = 352. A then selects a random number g = 42077 ∈ Z∗p and
computes α = 42077352 mod p = 441238. Since α 6= 1, α generates the unique cyclic
subgroup of order 3571 in Z∗p. Finally,A selects a random integer a = 2774 and computes
y = αa mod p = 1013657. A’s public key is (p = 1256993, q = 3571, α = 441238, y =
1013657), while A’s private key is a = 2774.
Signature generation. To sign a messagem,A computes m̃ = R(m) = 1147892 (the value
R(m) has been contrived for this example). A then randomly selects k = 1001, computes
r = α−k mod p = 441238−1001 mod p = 1188935, e = m̃r mod p = 138207, and s =
(2774)(138207)+ 1001 mod q = 1088. The signature form is (e = 138207, s = 1088).
Signature verification. B computes v = 4412381088 · 1013657−138207 mod 1256993 =
504308, and m̃ = v · 138207 mod 1256993 = 1147892. B verifies that m̃ ∈ MR and
recoversm = R−1(m̃). �

11.83 Note (security of the Nyberg-Rueppel signature scheme)

(i) Since Algorithm 11.81 is a variant of the basic ElGamal scheme (Algorithm 11.64),
the security considerations of Note 11.66 apply. Like DSA (Algorithm 11.56), this
ElGamal mechanism with message recovery relies on the difficulty of two related but
distinct discrete logarithm problems (see Note 11.58).

(ii) Since Algorithm 11.81 provides message recovery, a suitable redundancy functionR
is required (see Note 11.10) to guard against existential forgery. As is the case with
RSA, the multiplicative nature of this signature scheme must be carefully consid-
ered when choosing a redundancy functionR. The following possible attack should
be kept in mind. Suppose m ∈ M, m̃ = R(m), and (e, s) is a signature for m.
Then e = m̃α−k mod p for some integer k and s = ae + k mod q. Let m̃∗ =
m̃αl mod p for some integer l. If s∗ = s + l mod q and m̃∗ ∈ MR, then (e, s∗)

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

462 Ch. 11 Digital Signatures

is a valid signature form∗ = R−1(m̃∗). To see this, consider the verification algo-
rithm (step 2 of Algorithm 11.81). v ≡ αs

∗

y−e ≡ αs+lα−ae ≡ αk+l (mod p), and
ve ≡ αk+lm̃α−k ≡ m̃αl ≡ m̃∗ (mod p). Since m̃∗ ∈ MR, the forged signature
(e, s∗) will be accepted as a valid signature form∗.

(iii) The verification that 0 < e < p given in step 2b of Algorithm 11.81 is crucial.
Suppose (e, s) is A’s signature for the message m. Then e = m̃r mod p and s =
ae+ k mod q. An adversary can use this signature to compute a signature on a mes-
sagem∗ of its choice. It determines an e∗ such that e∗ ≡ m̃∗r (mod p) and e∗ ≡ e
(mod q). (This is possible by the Chinese Remainder Theorem (Fact 2.120).) The

pair (e∗, s) will pass the verification algorithm provided that 0 < e∗ < p is not
checked.

11.84 Note (a generalization of ElGamal signatures with message recovery) The expression e =
m̃r mod p in step 1c of Algorithm 11.81 provides a relatively simple way to encrypt m̃with
key r and could be generalized to any symmetric-key algorithm. Let E = {Er : r ∈ Zp}
be a set of encryption transformations where each Er is indexed by an element r ∈ Z∗p
and is a bijection fromMS = Z

∗
p to Z∗p. For any m ∈ M, select a random integer k,

1 ≤ k ≤ q − 1, compute r = αk mod p, e = Er(m̃), and s = ae + k mod q. The pair
(e, s) is a signature for m. The fundamental signature equation s = ae + k mod q is a
means to bind entityA’s private key and the messagem to a symmetric key which can then
be used to recover the message by any other entity at some later time.

11.6 One-time digital signatures

One-time digital signature schemes are digital signature mechanisms which can be used
to sign, at most, one message; otherwise, signatures can be forged. A new public key is
required for each message that is signed. The public information necessary to verify one-
time signatures is often referred to as validation parameters. When one-time signatures are
combined with techniques for authenticating validation parameters, multiple signatures are
possible (see §11.6.3 for a description of authentication trees).

Most, but not all, one-time digital signature schemes have the advantage that signature
generation and verification are very efficient. One-time digital signature schemes are useful
in applications such as chipcards, where low computational complexity is required.

11.6.1 The Rabin one-time signature scheme

Rabin’s one-time signature scheme was one of the first proposals for a digital signature of
any kind. It permits the signing of a single message. The verification of a signature requires
interaction between the signer and verifier. Unlike other digital signature schemes, verifi-
cation can be done only once. While not practical, it is presented here for historical reasons.
Notation used in this section is given in Table 11.7.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.6 One-time digital signatures 463

Symbol Meaning

M0 0l = the all 0’s string of bitlength l.
M0(i) 0l−e‖be−1 · · · b1b0 where be−1 · · · b1b0 is the binary representation of i.
K a set of l-bit strings.
E a set of encryption transformations indexed by a key space K.
Et an encryption transformation belonging to E with t ∈ K. Each Et

maps l-bit strings to l-bit strings.
h a publicly-known one-way hash function from {0, 1}∗ to {0, 1}l.
n a fixed positive integer which serves as a security parameter.

Table 11.7: Notation for the Rabin one-time signature scheme.

11.85 Algorithm Key generation for the Rabin one-time signature scheme

SUMMARY: each entity A selects a symmetric-key encryption scheme E, generates 2n
random bitstrings, and creates a set of validation parameters.
Each entity A should do the following:

1. Select a symmetric-key encryption scheme E (e.g., DES).
2. Generate 2n random secret strings k1, k2, . . . , k2n ∈ K, each of bitlength l.
3. Compute yi = Eki(M0(i)), 1 ≤ i ≤ 2n.
4. A’s public key is (y1, y2, . . . , y2n); A’s private key is (k1, k2, . . . , k2n).

11.86 Algorithm Rabin one-time signature generation and verification

SUMMARY: entity A signs a binary messagem of arbitrary length. Signature verification
is interactive with A.

1. Signature generation. Entity A should do the following:

(a) Compute h(m).
(b) Compute si = Eki(h(m)), 1 ≤ i ≤ 2n.
(c) A’s signature form is (s1, s2, . . . , s2n).

2. Verification. To verify A’s signature (s1, s2, . . . , s2n) onm, B should:

(a) Obtain A’s authentic public key (y1, y2, . . . , y2n).
(b) Compute h(m).
(c) Select n distinct random numbers rj , 1 ≤ rj ≤ 2n, for 1 ≤ j ≤ n.
(d) Request from A the keys krj , 1 ≤ j ≤ n.
(e) Verify the authenticity of the received keys by computing zj = Ekrj (M0(rj))

and checking that zj = yrj , for each 1 ≤ j ≤ n.
(f) Verify that srj = Ekrj (h(m)), 1 ≤ j ≤ n.

11.87 Note (key sizes for Rabin’s one-time signatures) Since Et outputs l bits (see Table 11.7),
the public and private keys in Algorithm 11.86 each consist of 2nl bits. For n = 80 and
l = 64, the keys are each 1280 bytes long.

11.88 Note (resolution of disputes) To resolve potential disputes between the signer A and the
verifier B using Algorithm 11.86, the following procedure is followed:

1. B provides a trusted third party (TTP) withm and the signature (s1, s2, . . . , s2n).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

464 Ch. 11 Digital Signatures

2. The TTP obtains k1, k2, . . . , k2n from A.
3. The TTP verifies the authenticity of the private key by computing zi = Eki(M0(i))

and checking that yi = zi, 1 ≤ i ≤ 2n. If this fails, the TTP rules in favor ofB (i.e.,
the signature is deemed to be valid).

4. The TTP computes ui = Eki(h(m)), 1 ≤ i ≤ 2n. If ui = si for at most n values
of i, 1 ≤ i ≤ 2n, the signature is declared a forgery and the TTP rules in favor of A
(who denies having created the signature). If n+1 or more values of i give ui = si,
the signature is deemed valid and the TTP rules in favor of B.

11.89 Note (rationale for dispute resolution protocol) The rationale for adjudicating disputes in
Rabin’s one-time signature scheme, as outlined in Note 11.88, is as follows. If B has at-
tempted to forge A’s signature on a new messagem′, B either needs to determine at least
one more key k′ so that at least n + 1 values of i give ui = si, or determinem′ such that
h(m) = h(m′). This should be infeasible if the symmetric-key algorithm and hash function
are chosen appropriately. If A attempts to create a signature which it can later disavow, A
must ensure that ui = si for precisely n values of i and hope thatB chooses these n values
in step 2c of the verification procedure, the probability of which is only 1/

(
2n
n

)
.

11.90 Note (one-timeness of Algorithm 11.86)A can sign at most one message with a given pri-
vate key in Rabin’s one-time scheme; otherwise,Awill (with high probability) reveal n+1
or more of the private key values and enableB (and perhaps collaborators) to forge signa-
tures on new messages (see Note 11.89). A signature can only be verified once without
revealing (with high probability) more than n of the 2n private values.

11.6.2 The Merkle one-time signature scheme

Merkle’s one-time digital signature scheme (Algorithm 11.92) differs substantially from
that of Rabin (Algorithm 11.86) in that signature verification is not interactive with the
signer. A TTP or some other trusted means is required to authenticate the validation pa-
rameters constructed in Algorithm 11.91.

11.91 Algorithm Key generation for the Merkle one-time signature scheme

SUMMARY: to sign n-bit messages,A generates t = n+blgnc+1 validation parameters.
Each entity A should do the following:

1. Select t = n+ blgnc+ 1 random secret strings k1, k2, . . . , kt each of bitlength l.
2. Compute vi = h(ki), 1 ≤ i ≤ t. Here, h is a preimage-resistant hash function
h : {0, 1}∗ −→ {0, 1}l (see §9.2.2).

3. A’s public key is (v1, v2, . . . , vt); A’s private key is (k1, k2, . . . , kt).

To sign an n-bit message m, a bitstring w = m‖c is formed where c is the binary
representation for the number of 0’s inm. c is assumed to be a bitstring of bitlength blgnc+
1 with high-order bits padded with 0’s, if necessary. Hence, w is a bitstring of bitlength
t = n+ blgnc+ 1.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.6 One-time digital signatures 465

11.92 Algorithm Merkle one-time signature generation and verification

SUMMARY: entity A signs a binary message m of bitlength n. Any entity B can verify
this signature by using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Compute c, the binary representation for the number of 0’s inm.
(b) Form w = m‖c = (a1a2 · · · at).
(c) Determine the coordinate positions i1 < i2 < · · · < iu in w such that aij = 1,
1 ≤ j ≤ u.

(d) Let sj = kij , 1 ≤ j ≤ u.
(e) A’s signature form is (s1, s2, . . . , su).

2. Verification. To verify A’s signature (s1, s2, . . . , su) onm, B should:

(a) Obtain A’s authentic public key (v1, v2, . . . , vt).
(b) Compute c, the binary representation for the number of 0’s inm.
(c) Form w = m‖c = (a1a2 · · · at).
(d) Determine the coordinate positions i1 < i2 < · · · < iu in w such that aij = 1,
1 ≤ j ≤ u.

(e) Accept the signature if and only if vij = h(sj) for all 1 ≤ j ≤ u.

11.93 Note (security of Merkle’s one-time signature scheme) Let m be a message, w = m‖c
the bitstring formed in step 1b of Algorithm 11.92, and (s1, s2, . . . , su) a signature form.
If h is a preimage-resistant hash function, the following argument shows that no signature
for a message m′ 6= m can be forged. Let w′ = m′‖c′ where c′ is the (blg nc + 1)-bit
string which is the binary representation for the number of 0’s in m′. Since an adversary
has access to only that portion of the signer’s private key which consists of (s1, s2, . . . , su),
the set of coordinate positions inm′ having a 1must be a subset of the coordinate positions
in m having a 1 (otherwise, m′ will have a 1 in some position where m has a 0 and the
adversary will require an element of the private key not revealed by the signer). But this
means thatm′ has more 0’s thanm and that c′ > c (when considered as integers). In this
case, c′will have a 1 in some position where c has a 0. The adversary would require a private
key element, corresponding to this position, which was not revealed by the signer.

11.94 Note (storage and computational requirements of Algorithm 11.92)

(i) To sign an n-bit message m which has k ones requires l · (n + blg nc + 1) bits of
storage for the validation parameters (public key), and l · (n+ blg nc+1) bits for the
private key. The signature requires l · (k+k′) bits of storage, where k′ is the number
of 1’s in the binary representation of n − k. For example, if n = 128, l = 64, and
k = 72, then the public and private keys each require 8704 bits (1088 bytes). The
signature requires 4800 bits (600 bytes).

(ii) The private key can be made smaller by forming the ki’s from a single seed value.
For example, if k∗ is a bitstring of bitlength at least l, then form ki = h(k∗‖i), 1 ≤
i ≤ t. Since only the seed k∗ need be stored, the size of the private key is drastically
reduced.

(iii) Signature generation is very fast, requiring no computation. Signature verification
requires the evaluation of the hash function for fewer than n+ blg nc+ 1 values.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

466 Ch. 11 Digital Signatures

11.95 Note (improving efficiency of Merkle’s one-time scheme) Algorithm 11.92 requires l ·(n+
blgnc + 1) bits for each of the public and private keys. The public key must necessarily
be this large because the signing algorithm considers individual bits of the message. The
scheme can be made more efficient if the signing algorithm considers more than one bit at
a time. Suppose entity A wishes to sign a kt-bit messagem. Writem = m1‖m2‖ · · · ‖mt
where eachmi has bitlength k and each represents an integer between 0 and 2k−1 inclusive.
Define U =

∑t
i=1(2

k −mi) ≤ t2k. U can be represented by lgU ≤ blg tc+ 1 + k bits.
If r = d(blg tc + 1 + k)/ke, then U can be written in binary as U = u1‖u2‖ · · · ‖ur,
where each ui has bitlength k. Form the bitstring w = m1‖m2‖ · · ·mt‖u1‖u2‖ · · · ‖ur.
Generate t+ r random bitstrings k1, k2, . . . , kt+r and compute vi = h2

k−1(ki), 1 ≤ i ≤
t+ r. The private key for the modified scheme is (k1, k2, . . . , kt+r) and the public key is
(v1, v2, . . . , vt+r). The signature form is (s1, s2, . . . , st+r)where si = hmi(ki), 1 ≤ i ≤
t, and si = hui(kt+i), 1 ≤ i ≤ r. Here, hc denotes the c-fold composition of h with itself.
As with the original scheme (Algorithm 11.92), the bits appended to the message act as a
check-sum (see Note 11.93) as follows. Given an element si = ha(kj), an adversary can
easily compute ha+δ(kj) for 0 ≤ δ ≤ 2k−a, but is unable to compute ha−δ for any δ > 0
if h is a one-way hash function. To forge a signature on a new message, an adversary can
only reduce the value of the check-sum, which will make it impossible for him to compute
the required hash values on the appended kr bits.

11.96 Example (signing more than one bit at a time) This example illustrates the modification
of the Merkle scheme described in Note 11.95. Let m = m1‖m2‖m3‖m4 where m1 =
1011, m2 = 0111, m3 = 1010, and m4 = 1101. m1, m2, m3, and m4 are the binary
representations of 11, 7, 10, and 13, respectively. U = (16 −m1) + (16−m2) + (16−
m3)+ (16−m4) = 5+9+6+3 = 23. In binary,U = 10111. Formw = m‖0001 0111.
The signature is (s1, s2, s3, s4, s5, s6) where s1 = h11(k1), s2 = h7(k2), s3 = h10(k3),
s4 = h

13(k4), s5 = h1(x5), and s6 = h7(x6). If an adversary tries to alter the message, he
can only apply the function h to some si. This causes the sum of the exponents used (i.e.,∑
mi) to increase and, hence, t2d −

∑
mi to decrease. An adversary would be unable

to modify the last two blocks since h−1 is required to decrease the sum. But, since h is
preimage-resistant, h−1 cannot be computed by the adversary. �

11.6.3 Authentication trees and one-time signatures

§13.4.1 describes the basic structure of an authentication tree and relates how such a tree
could be used, among other things, to authenticate a large number of public validation pa-
rameters for a one-time signature scheme. This section describes how an authentication tree
can be used in conjunction with a one-time signature scheme to provide a scheme which al-
lows multiple signatures. A small example will serve to illustrate how this is done.

11.97 Example (an authentication tree for Merkle’s one-time scheme) Consider the one-time
signature scheme of Algorithm 11.92 for signing n-bit messages. Let h : {0, 1}∗ −→
{0, 1}l be a preimage-resistant hash function and t = n + blg nc + 1. Figure 11.7 il-
lustrates a 5-vertex binary tree created by an entity A in the course of signing five mes-
sagesm0,m1,m2,m3,m4. Each vertex in the tree is associated with one of the five mes-
sages. For the vertex associated with messagemi,A has selectedXi = (x1i, x2i, . . . , xti),
Ui = (u1i, u2i, . . . , uti) and Wi = (w1i, w2i, . . . , wti), 0 ≤ i ≤ 4, the elements of
which are random bitstrings. From these lists, A has computed Yi = (h(xji) : 1 ≤ j ≤
t), Vi = (h(uji) : 1 ≤ j ≤ t), and Zi = (h(wji) : 1 ≤ j ≤ t). Define h(Yi) =

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.6 One-time digital signatures 467

R2

R3 R4

R1

R0

Figure 11.7: An authentication tree for the Merkle one-time signature scheme (cf. Example 11.97).

h(h(x1i)‖h(x2i)‖ · · · ‖h(xti)) for 0 ≤ i ≤ 4, and define h(Vi) and h(Zi) analogously.
Denote the Merkle one-time signature of mi using private key Xi by SA(mi, Xi), 0 ≤
i ≤ 4. Yi is the set of validation parameters for the signature SA(mi, Xi). Finally, let
Ri = h(h(Yi)‖h(Vi)‖h(Zi)), 0 ≤ i ≤ 4. Table 11.8 summarizes the parameters asso-
ciated with the vertex Ri. The sets Ui and Wi are used to sign the labels of the children

message mi
private parameters Xi, Ui,Wi
public parameters Yi, Vi, Zi
hash values h(Yi), h(Vi), h(Zi)
Ri h(h(Yi)‖h(Vi)‖h(Zi))
signature SA(mi,Xi)
validation parameters Yi

Table 11.8: Parameters and signature associated with vertex Ri, 0 ≤ i ≤ 4 (cf. Figure 11.7).

of vertex Ri. The signature on vertex R0 is that of a trusted third party (TTP). Table 11.9
summarizes the parameters and signatures associated with each vertex label of the binary
tree. To describe how the tree is used to verify signatures, consider messagem4 and signa-

Message Vertex Signature on Authentication
Label Vertex Label Parameters

m0 R0 Signature of TTP —
m1 R1 SA(R1, U0) V0, h(Y0), h(Z0)
m2 R2 SA(R2,W0) Z0, h(Y0), h(V0)
m3 R3 SA(R3, U1) V1, h(Y1), h(Z1)
m4 R4 SA(R4,W1) Z1, h(Y1), h(V1)

Table 11.9: Parameters and signatures associated with vertices of the binary tree (cf. Figure 11.7).

ture SA(m4, X4). The signerA first provides the verifierB with the validation parameters
Y4. The verifier checks the Merkle one-time signature using step 2 of Algorithm 11.92. B
must then be convinced that Y4 is an authentic set of validation parameters created by A.
To accomplish this,A providesB with a sequence of values enumerated in the steps below:

1. h(V4), h(Z4); B computes h(Y4) and then R4 = h(h(Y4)‖h(V4)‖h(Z4)).
2. SA(R4,W1) and Z1; B verifies the signature on R4 using Algorithm 11.92.
3. h(Y1), h(V1); B computes h(Z1) and then R1 = h(h(Y1)‖h(V1)‖h(Z1)).
4. SA(R1, U0) and V0; B verifies the signature using Algorithm 11.92.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

468 Ch. 11 Digital Signatures

5. h(Y0), h(Z0); B computes h(V0) and then R0 = h(h(Y0)‖h(V0)‖h(Z0)).
6. the signature of the TTP for R0; B verifies the TTP’s signature using an algorithm

appropriate to the signature mechanism for the TTP.

The binary tree on 5 vertices (Figure 11.7) could be extended indefinitely from any leaf as
more signatures are created by A. The length of a longest authentication path (or equiva-
lently, the depth of the tree) determines the maximum amount of information whichAmust
provideB in order for B to verify the signature of a message associated with a vertex. �

11.6.4 The GMR one-time signature scheme

The Goldwasser, Micali, and Rivest (GMR) scheme (Algorithm 11.102) is a one-time sig-
nature scheme which requires a pair of claw-free permutations (see Definition 11.98). When
combined with a tree authentication procedure, it provides a mechanism for signing more
than one message. The GMR scheme is noteworthy as it was the first digital signature mech-
anism proven to be secure against an adaptive chosen-message attack. Although the GMR
scheme is not practical, variations of it have been proposed which suggest that the concept
is not purely of theoretical importance.

11.98 Definition Let gi : X −→ X , i = 0, 1, be two permutations defined on a finite set X .
g0 and g1 are said to be a claw-free pair of permutations if it is computationally infeasible
to find x, y ∈ X such that g0(x) = g1(y). A triple (x, y, z) of elements from X with
g0(x) = g1(y) = z is called a claw. If both gi, i = 0, 1, have the property that given
additional information it is computationally feasible to determine g−10 , g−11 , respectively,
the permutations are called a trapdoor claw-free pair of permutations.

In order for g0, g1 to be a claw-free pair, computing g−1i (x), for both i = 0 and 1,
must be computationally infeasible for essentially all x ∈ X . For, if g−11 (and similarly for
g−10) could be efficiently computed, one could select an x ∈ X , compute g0(x) = z and
g−11 (z) = y, to obtain a claw (x, y, z).

11.99 Example (trapdoor claw-free permutation pair) Let n = pq where p ≡ 3 (mod 4) and
q ≡ 7 (mod 8). For this choice of p and q,

(
−1
n

)
= 1 but −1 6∈ Qn, and

(
2
n

)
= −1. Here,(

·
n

)
denotes the Jacobi symbol (Definition 2.147). DefineDn = {x :

(
x
n

)
= 1 and 0 < x <

n
2 }. Define g0 : Dn −→ Dn and g1 : Dn −→ Dn by

g0(x) =

{
x2 mod n, if x2 mod n < n

2 ,
−x2 mod n, if x2 mod n > n

2 ,

g1(x) =

{
4x2 mod n, if 4x2 mod n < n

2 ,
−4x2 mod n, if 4x2 mod n > n

2 .

If factoring n is intractable, then g0, g1 form a trapdoor claw-free pair of permutations; this
can be seen as follows.

(i) (g0 and g1 are permutations onDn) If g0(x) = g0(y), then x2 ≡ y2 (mod n) (x2 ≡
−y2 (mod n) is not possible since −1 6∈ Qn), whence x ≡ ±y (mod n). Since
0 < x, y < n/2, then x = y, and hence g0 is a permutation on Dn. A similar
argument shows that g1 is a permutation onDn.

(ii) (g0 and g1 are claw-free) Suppose that there is an efficient method for finding x, y ∈
Dn such that g0(x) = g1(y). Then x2 ≡ 4y2 (mod n) (x2 ≡ −4y2 (mod n) is

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.6 One-time digital signatures 469

impossible since−1 6∈ Qn), whence (x−2y)(x+2y) ≡ 0 (mod n). Since
(
x
n

)
= 1

and
(±2y
n

)
= −1, x 6≡ ±2y (mod n) and, hence, gcd(x−2y, n) yields a non-trivial

factor of n. This contradicts the assumption that factoring n is intractable.
(iii) (g0, g1 is a trapdoor claw-free pair) Knowing the factorization of n permits one to

compute g−10 and g−11 . Hence, g0, g1 is a trapdoor claw-free permutation pair. �

The following example illustrates the general construction given in Example 11.99.

11.100 Example (pair of claw-free permutations for artificially small parameters) Let p = 11,
q = 7, and n = pq = 77. D77 = {x : (xn) = 1 and 0 < x < 38} = {1, 4, 6, 9, 10, 13, 15,
16, 17, 19, 23, 24, 25, 36, 37}. The following table describes g0 and g1.

x 1 4 6 9 10 13 15 16 17 19 23 24 25 36 37

g0(x) 1 16 36 4 23 15 6 25 19 24 10 37 9 13 17
g1(x) 4 13 10 16 15 17 24 23 1 19 37 6 36 25 9

Notice that g0 and g1 are permutations onD77. �

11.101 Algorithm Key generation for the GMR one-time signature scheme

SUMMARY: each entity selects a pair of trapdoor claw-free permutations and a validation
parameter.
Each entity A should do the following:

1. Select a pair g0, g1 of trapdoor claw-free permutations on some set X . (It is “trap-
door” in that A itself can compute g−10 and g−11 .)

2. Select a random element r ∈ X . (r is called a validation parameter.)
3. A’s public key is (g0, g1, r); A’s private key is (g−10 , g

−1
1).

In the following, the notation for the composition of functions g0, g1 usually denoted g0◦g1
(see Definition 1.33) is simplified to g0g1. Also, (g0g1)(r) will be written as g0g1(r). The
signing spaceMS consists of binary strings which are prefix-free (see Note 11.103).

11.102 Algorithm GMR one-time signature generation and verification

SUMMARY: A signs a binary stringm = m1m2 · · ·mt. B verifies using A’s public key.

1. Signature generation. Entity A should do the following:

(a) Compute Sr(m) =
∏t−1
i=0 g

−1
mt−i
(r).

(b) A’s signature form is Sr(m).

2. Verification. To verify A’s signature Sr(m) onm, B should do the following:

(a) Obtain A’s authentic public key (g0, g1, r).
(b) Compute r′ =

∏t
i=1 gmi(Sr(m)).

(c) Accept the signature if and only if r′ = r.

Proof that signature verification works.

r′ =
t∏
i=1

gmi(Sr(m)) =
t∏
i=1

gmi

t−1∏
j=0

g−1mt−j (r)

= gm1 ◦ gm2 ◦ · · · ◦ gmt ◦ g
−1
mt ◦ g

−1
mt−1 ◦ · · · ◦ g

−1
m1(r) = r.

Thus r′ = r, as required.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

470 Ch. 11 Digital Signatures

11.103 Note (message encoding and security) The set of messages which can be signed using Al-
gorithm 11.102 must come from a set of binary strings which are prefix-free. (For example,
101 and 10111 cannot be in the same space since 101 is a prefix of 10111.) One method to
accomplish this is to encode a binary string b1b2 · · · bl as b1b1b2b2 · · · blbl01. To see why
the prefix-free requirement is necessary, supposem = m1m2 · · ·mt is a message whose
signature is Sr(m) =

∏t−1
i=0 g

−1
mt−i
(r). If m′ = m1m2 · · ·mu, u < t, then an adversary

can easily find a valid signature form′ from Sr(m) by computing

Sr(m
′) =

t∏
j=u+1

gmj (Sr(m)) =
u−1∏
i=0

g−1mu−i(r).

11.104 Note (one-timeness of Algorithm 11.102) To see that the GMR signature scheme is a one-
time scheme, suppose that two prefix-free messagesm = m1m2 · · ·mt andm′ = n1n2 · · ·
nu are both signed with the same validation parameter r. Then Sr(m) =

∏t−1
i=0 g

−1
mt−i
(r)

and Sr(m′) =
∏u−1
i=0 g

−1
nu−i(r). Therefore,

∏t
i=1 gmi(Sr(m)) = r =

∏u
i=1 gni(Sr(m

′)).
Since the message space is prefix-free, there is a smallest index h ≥ 1 for whichmh 6= nh.
Since each gj is a bijection, it follows that

t∏
i=h

gmi(Sr(m)) =
u∏
i=h

gni(Sr(m
′))

or

gmh

t∏
i=h+1

gmi(Sr(m)) = gnh

u∏
i=h+1

gni(Sr(m
′)).

Taking x =
∏t
i=h+1 gmi(Sr(m)), and y =

∏u
i=h+1 gni(Sr(m

′)), the adversary has a
claw (x, y, gmh(x)). This violates the basic premise that it is computationally infeasible
to find a claw. It should be noted that this does not necessarily mean that a signature for a
new message can be forged. In the particular case given in Example 11.99, finding a claw
factors the modulus n and permits anyone to sign an unlimited number of new messages
(i.e., a total break of the system is possible).

11.105 Example (GMR with artificially small parameters.)
Key generation. Let n, p, q, g0, g1 be those given in Example 11.100. A selects the valida-
tion parameter r = 15 ∈ D77.
Signature generation. Letm = 1011000011 be the message to be signed. Then

Sr(m) = g
−1
1 ◦ g

−1
1 ◦ g

−1
0 ◦ g

−1
0 ◦ g

−1
0 ◦ g

−1
0 ◦ g

−1
1 ◦ g

−1
1 ◦ g

−1
0 ◦ g

−1
1 (15) = 23.

A’s signature for messagem is 23.
Signature verification. To verify the signature, B computes

r′ = g1 ◦ g0 ◦ g1 ◦ g1 ◦ g0 ◦ g0 ◦ g0 ◦ g0 ◦ g1 ◦ g1(23) = 15.

Since r = r′, B accepts the signature. �

GMR scheme with authentication trees

In order to sign multiple messages using the GMR one-time signature scheme (Algorithm
11.102), authentication trees (see §13.4.1) are required. Although conceptually similar to
the method described in §11.6.3, only the leaves are used to produce the signature. Before
giving details, an overview and some additional notation are necessary.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.7 Other signature schemes 471

11.106 Definition A full binary tree with k levels is a binary tree which has 2k+1−1 vertices and
2k leaves. The leaves are said to be at level k of the tree.

Let T be a full binary tree with k levels. Select public parametersY1, Y2, . . . , Yn where
n = 2k. Form an authentication tree T ∗ fromT with root labelR (see below). R is certified
by a TTP and placed in a publicly available file. T ∗ can now be used to authenticate any of
the Yi by providing the authentication path values associated with the authentication path
for Yi. Each Yi can now be used as the public parameter r for the GMR scheme. The details
for constructing the authentication tree T ∗ now follow.

The tree T ∗ is constructed recursively. For the root vertex, select a value r and two t-
bit binary strings rL and rR. Sign the string rL‖rR with the GMR scheme using the public
value r. The label for the root consists of the values r, rL, rR, and Sr(rL‖rR). To authen-
ticate the children of the root vertex, select t-bit binary strings b0L, b1L, b0R, and b1R. The
label for the left child of the root is the set of values rL, b0L, b1L, SrL(b0L‖b1L) and the
label for the right child is rR, b0R, b1R, SrR(b0R‖b1R). Using the strings b0L, b1L, b0R, and
b1R as public values for the signing mechanism, one can construct labels for the children of
the children of the root. Continuing in this manner, each vertex of T ∗ can be labeled. The
method is illustrated in Figure 11.8.

r,rL,rR,Sr(rL‖rR)

rL,b0L,b1L ,SrL(b0L‖b1L)

b0L,c0L,c1L,Sb0L (c0L‖c1L)

rR,b0R,b1R ,SrR(b0R‖b1R)

b1R,d0R,d1R ,Sb1R (d0R‖d1R)

b0R,d0L ,d1L,Sb0R (d0L‖d1L)b1L,c0R,c1R,Sb1L (c0R‖c1R)

Figure 11.8: A full binary authentication tree of level 2 for the GMR scheme.

Each leaf of the authentication tree T ∗ can be used to sign a different binary message
m. The signing procedure uses a pair of claw-free permutations g0, g1. If m is the binary
message to be signed, and x is the public parameter in the label of a leaf which has not
been used to sign any other message, then the signature form consists of both Sx(m) and
the authentication path labels.

11.7 Other signature schemes

The signature schemes described in this section do not fall naturally into the general set-
tings of §11.3 (RSA and related signature schemes), §11.4 (Fiat-Shamir signature schemes),
§11.5 (DSA and related signature schemes), or §11.6 (one-time digital signatures).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

472 Ch. 11 Digital Signatures

11.7.1 Arbitrated digital signatures

11.107 Definition An arbitrated digital signature scheme is a digital signature mechanism re-
quiring an unconditionally trusted third party (TTP) as part of the signature generation and
verification.

Algorithm 11.109 requires a symmetric-key encryption algorithm E = {Ek : k ∈ K}
where K is the key space. Assume that the inputs and outputs of each Ek are l-bit strings,
and let h : {0, 1}∗ −→ {0, 1}l be a one-way hash function. The TTP selects a key kT ∈ K
which it keeps secret. In order to verify a signature, an entity must share a symmetric key
with the TTP.

11.108 Algorithm Key generation for arbitrated signatures

SUMMARY: each entity selects a key and transports it secretly with authenticity to the TTP.
Each entity A should do the following:

1. Select a random secret key kA ∈ K.
2. Secretly and by some authentic means, make kA available to the TTP.

11.109 Algorithm Signature generation and verification for arbitrated signatures

SUMMARY: entity A generates signatures using EkA . Any entity B can verifyA’s signa-
ture with the cooperation of the TTP.

1. Signature generation. To sign a messagem, entity A should do the following:

(a) A computesH = h(m).
(b) A encryptsH with E to get u = EkA(H).
(c) A sends u along with some identification string IA to the TTP.
(d) The TTP computes E−1kA (u) to getH .
(e) The TTP computes s = EkT (H||IA) and sends s to A.
(f) A’s signature form is s.

2. Verification. Any entity B can verify A’s signature s onm by doing the following:

(a) B computes v = EkB (s).
(b) B sends v and some identification string IB to the TTP.
(c) The TTP computes E−1kB (v) to get s.

(d) The TTP computes E−1kT (s) to getH‖IA.
(e) The TTP computes w = EkB (H‖IA) and sends w to B.
(f) B computes E−1kB (w) to get H‖IA.
(g) B computesH ′ = h(m) fromm.
(h) B accepts the signature if and only ifH ′ = H .

11.110 Note (security of arbitrated signature scheme) The security of Algorithm 11.109 is based
on the symmetric-key encryption scheme chosen and the ability to distribute keys to par-
ticipants in an authentic manner. §13.3 discusses techniques for distributing confidential
keys.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.7 Other signature schemes 473

11.111 Note (performance characteristics of arbitrated signatures) Since symmetric-key algo-
rithms are typically much faster than public-key techniques, signature generation and veri-
fication by Algorithm 11.109 are (relatively) very efficient. A drawback is that interaction
with the TTP is required, which places a much higher burden on the TTP and requires ad-
ditional message exchanges between entities and the TTP.

11.7.2 ESIGN

ESIGN (an abbreviation for Efficient digital SIGNature) is another digital signature scheme
whose security relies on the difficulty of factoring integers. It is a signature scheme with
appendix and requires a one-way hash function h : {0, 1}∗ −→ Zn.

11.112 Algorithm Key generation for ESIGN

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:

1. Select random primes p and q such that p ≥ q and p, q are roughly of the same
bitlength.

2. Compute n = p2q.
3. Select a positive integer k ≥ 4.
4. A’s public key is (n, k); A’s private key is (p, q).

11.113 Algorithm ESIGN signature generation and verification

SUMMARY: the signing algorithm computes an integer s such that sk mod n lies in a cer-
tain interval determined by the message. Verification demonstrates that sk mod n does in-
deed lie in the specified interval.

1. Signature generation. To sign a message m which is a bitstring of arbitrary length,
entity A should do the following:

(a) Compute v = h(m).
(b) Select a random secret integer x, 0 ≤ x < pq.
(c) Compute w = d((v − xk) mod n)/(pq)e and y = w · (kxk−1)−1 mod p.
(d) Compute s = x+ ypq mod n.
(e) A’s signature form is s.

2. Verification. To verify A’s signature s onm, B should do the following:

(a) Obtain A’s authentic public key (n, k).
(b) Compute u = sk mod n and z = h(m).
(c) If z ≤ u ≤ z + 2d

2
3 lg ne, accept the signature; else reject it.

Proof that signature verification works. Note that sk ≡ (x+ypq)k ≡
∑k
i=0

(
k
i

)
xk−i(ypq)i

≡ xk + kypqxk−1 (mod n). But kxk−1y ≡ w (mod p) and, thus, kxk−1y = w+ lp for

some l ∈ Z. Hence, sk ≡ xk + pq(w + lp) ≡ xk + pqw ≡ xk + pq
⌈
(h(m)−xk)modn

pq

⌉
≡

xk + pq
(
h(m)−xk+jn+ε

pq

)
(mod n), where ε = (xk − h(m)) mod pq. Therefore, sk ≡

xk + h(m) − xk + ε ≡ h(m) + ε (mod n). Since 0 ≤ ε < pq, it follows that h(m) ≤

sk mod n ≤ h(m) + pq ≤ h(m) + 2d
2
3 lgne, as required.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

474 Ch. 11 Digital Signatures

11.114 Example (ESIGN for artificially small parameters) In Algorithm 11.113, take messages
to be integersm, 0 ≤ m < n, and the hash function h to be h(m) = m.
Key generation. A selects primes p = 17389 and q = 15401, k = 4, and computes
n = p2q = 4656913120721. A’s public key is (n = 4656913120721, k = 4); A’s private
key is (p = 17389, q = 15401).
Signature generation. To sign the messagem = 3111527988477,A computes v = h(m)
= 3111527988477, and selects x = 14222 such that 0 ≤ x < pq. A then computes w =⌈
((v − xk) mod n)/(pq)

⌉
= d2848181921806/267807989e = d10635.16414e = 10636

and y = w(kxk−1)−1 mod p = 10636(4× 142223)−1 mod 17389 = 9567. Finally, A
computes the signature s = x+ ypq mod n = 2562119044985.
Signature verification. B obtains A’s public key (n = 4656913120721, k = 4), and com-
putes u = sk mod n = 3111751837675. Since 3111527988477 ≤ 3111751837675 ≤
3111527988477+ 229, B accepts the signature (here, d 23 lg ne = 29). �

11.115 Note (security of ESIGN)

(i) The modulus n = p2q in Algorithm 11.113 differs from an RSA modulus by having
a repeated factor of p. It is unknown whether or not moduli of this form are easier to
factor than integers which are simply the product of two distinct primes.

(ii) Given a valid signature s for a messagem, an adversary could forge a signature for
a message m′ if h(m′) is such that h(m′) ≤ u ≤ h(m′) + 2d

2
3 lgne (where u =

sk mod n). If anm′ with this property is found, then swill be a signature for it. This
will occur if h(m) and h(m′) agree in the high-order (lg n)/3 bits. Assuming that h
behaves like a random function, one would expect to try 2(lgn)/3 different values of
m′ before observing this.

(iii) Another possible approach to forging is to find a pair of messages m and m′ such
that h(m) and h(m′) agree in the high-order (lg n)/3 bits. By the birthday paradox
(Fact 2.27(ii)), one can expect to find such a pair inO(2(lgn)/6) trials. If an adversary
is able to get the legitimate signer to sign m, the same signature will be a signature
form′.

(iv) For the size of the integer n necessary to make the factorization of n infeasible, (ii)
and (iii) above are extremely unlikely possibilities.

11.116 Note (performance characteristics of ESIGN signatures) Signature generation in Algo-
rithm 11.113 is very efficient. For small values of k (e.g., k = 4), the most computationally
intensive part is the modular inverse required in step 1c. Depending on the implementation,
this corresponds to a small number of modular multiplications with modulus p. For k = 4
and a 768-bit modulus n, ESIGN signature generation may be between one and two orders
of magnitude (10 to 100 times) faster than RSA signature generation with an equivalent
modulus size. Signature verification is also very efficient and is comparable to RSA with a
small public exponent.

11.8 Signatures with additional functionality

The mechanisms described in this section provide functionality beyond authentication and
non-repudiation. In most instances, they combine a basic digital signature scheme (e.g.,
RSA) with a specific protocol to achieve additional features which the basic method does
not provide.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.8 Signatures with additional functionality 475

11.8.1 Blind signature schemes

Rather than signature schemes as described in §11.2, blind signature schemes are two-party
protocols between a sender A and a signer B. The basic idea is the following. A sends
a piece of information to B which B signs and returns to A. From this signature, A can
compute B’s signature on an a priori message m of A’s choice. At the completion of the
protocol,B knows neither the messagem nor the signature associated with it.

The purpose of a blind signature is to prevent the signerB from observing the message
it signs and the signature; hence, it is later unable to associate the signed message with the
sender A.

11.117 Example (applications of blind signatures) Blind signature schemes have applications
where the sender A (the customer) does not want the signer B (the bank) to be capable
of associating a postiori a messagem and a signature SB(m) to a specific instance of the
protocol. This may be important in electronic cash applications where a messagem might
represent a monetary value which A can spend. When m and SB(m) are presented to B
for payment,B is unable to deduce which party was originally given the signed value. This
allows A to remain anonymous so that spending patterns cannot be monitored. �

A blind signature protocol requires the following components:

1. A digital signature mechanism for signerB. SB(x) denotes the signature ofB on x.
2. Functions f and g (known only to the sender) such that g(SB(f(m))) = SB(m). f

is called a blinding function, g an unblinding function, and f(m) a blinded message.

Property 2 places many restrictions on the choice of SB and g.

11.118 Example (blinding function based on RSA) Let n = pq be the product of two large ran-
dom primes. The signing algorithm SB for entity B is the RSA signature scheme (Algo-
rithm 11.19) with public key (n, e) and private key d. Let k be some fixed integer with
gcd(n, k) = 1. The blinding function f : Zn −→ Zn is defined by f(m) = m · ke mod n
and the unblinding function g : Zn −→ Zn by g(m) = k−1m mod n. For this choice of
f , g, and SB , g(SB(f(m))) = g(SB(mke mod n)) = g(mdk mod n) = md mod n =
SB(m), as required by property 2. �

Protocol 11.119 presents a blind signature scheme which uses the digital signature
mechanism and functions f and g described in Example 11.118.

11.119 Protocol Chaum’s blind signature protocol

SUMMARY: senderA receives a signature ofB on a blinded message. From this, A com-
putes B’s signature on a message m chosen a priori by A, 0 ≤ m ≤ n − 1. B has no
knowledge ofm nor the signature associated withm.

1. Notation. B’s RSA public and private keys are (n, e) and d, respectively. k is a ran-
dom secret integer chosen by A satisfying 0 ≤ k ≤ n− 1 and gcd(n, k) = 1.

2. Protocol actions.

(a) (blinding)A computesm∗ = mke mod n and sends this to B.
(b) (signing) B computes s∗ = (m∗)d mod n which it sends to A.
(c) (unblinding)A computes s = k−1s∗ mod n, which is B’s signature onm.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

476 Ch. 11 Digital Signatures

11.8.2 Undeniable signature schemes

Undeniable signature schemes are distinct from digital signatures in the sense of §11.2 in
that the signature verification protocol requires the cooperation of the signer. The following
example describes two scenarios where an undeniable signature could be applied.

11.120 Example (scenarios for undeniable signatures)

(i) Entity A (the customer) wishes to gain access to a secured area controlled by entity
B (the bank). The secured area might, for example, be a safety-deposit box room. B
requires A to sign a time and date document before access is granted. If A uses an
undeniable signature, thenB is unable to prove (at some later date) to anyone thatA
used the facility withoutA’s direct involvement in the signature verification process.

(ii) Suppose some large corporationA creates a software package. A signs the package
and sells it to entity B, who decides to make copies of this package and resell it to a
third partyC. C is unable to verify the authenticity of the software without the coop-
eration ofA. Of course, this scenario does not preventB from re-signing the package
with its own signature but the marketing advantage associated with corporationA’s
name is lost to B. It will also be easier to trace the fraudulent activity of B. �

11.121 Algorithm Key generation for Algorithm 11.122

SUMMARY: each entity selects a private key and corresponding public key.
Each entity A should do the following:

1. Select a random prime p = 2q + 1 where q is also a prime.
2. (Select a generator α for the subgroup of order q in Z∗p.)

2.1 Select a random element β ∈ Z∗p and compute α = β(p−1)/q mod p.
2.2 If α = 1 then go to step 2.1.

3. Select a random integer a ∈ {1, 2, . . . , q − 1} and compute y = αa mod p.
4. A’s public key is (p, α, y); A’s private key is a.

11.122 Algorithm Chaum-van Antwerpen undeniable signature scheme

SUMMARY: A signs a messagem belonging to the subgroup of order q in Z∗p. Any entity
B can verify this signature with the cooperation of A.

1. Signature generation. Entity A should do the following:

(a) Compute s = ma mod p.
(b) A’s signature on messagem is s.

2. Verification. The protocol for B to verify A’s signature s onm is the following:

(a) B obtainsA’s authentic public key (p, α, y).
(b) B selects random secret integers x1, x2 ∈ {1, 2, . . . , q − 1}.
(c) B computes z = sx1yx2 mod p and sends z to A.

(d) A computesw=(z)a
−1
mod p (where aa−1 ≡ 1 (mod q)) and sendsw to B.

(e) B computes w′ =mx1αx2 mod p and accepts the signature if and only if w=
w′.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.8 Signatures with additional functionality 477

Proof that signature verification works.

w ≡ (z)a
−1

≡ (sx1yx2)a
−1

≡ (max1αax2)a
−1

≡ mx1αx2 ≡ w′ mod p,

as required.

Fact 11.123 states that, with high probability, an adversary is unable to cause B to ac-
cept a fraudulent signature.

11.123 Fact (detecting forgeries of undeniable signatures) Suppose that s is a forgery of A’s sig-
nature for a messagem, i.e., s 6= ma mod p. Then the probability of B accepting the sig-
nature in Algorithm 11.122 is only 1/q; this probability is independent of the adversary’s
computational resources.

11.124 Note (disavowing signatures) The signer A could attempt to disavow a (valid) signature
constructed by Algorithm 11.122 in one of three ways:

(i) refuse to participate in the verification protocol of Algorithm 11.122;
(ii) perform the verification protocol incorrectly; or

(iii) claim a signature a forgery even though the verification protocol is successful.

Disavowing a signature by following (i) would be considered as an obvious attempt at
(wrongful) repudiation. (ii) and (iii) are more difficult to guard against, and require a dis-
avowal protocol (Protocol 11.125).

Protocol 11.125 essentially applies the verification protocol of Algorithm 11.122 twice
and then performs a check to verify that A has performed the protocol correctly.

11.125 Protocol Disavowal protocol for Chaum-van Antwerpen undeniable signature scheme

SUMMARY: this protocol determines whether the signerA is attempting to disavow a valid
signature s using Algorithm 11.122, or whether the signature is a forgery.

1. B obtains A’s authentic public key (p, α, y).
2. B selects random secret integers x1, x2 ∈ {1, 2, . . . , q − 1}, and computes z =
sx1yx2 mod p, and sends z to A.

3. A computes w = (z)a
−1
mod p (where aa−1 ≡ 1 (mod q)) and sends w to B.

4. If w = mx1αx2 mod p, B accepts the signature s and the protocol halts.
5. B selects random secret integers x′1, x

′
2 ∈ {1, 2, . . . , q − 1}, and computes z′ =

sx
′
1yx

′
2 mod p, and sends z′ to A.

6. A computes w′ = (z′)a
−1

mod p and sends w′ to B.
7. If w′ = mx

′
1αx

′
2 mod p, B accepts the signature s and the protocol halts.

8. B computes c = (wα−x2)x
′
1 mod p and c′ = (w′α−x

′
2)x1 mod p. If c = c′, then B

concludes that s is a forgery; otherwise, B concludes that the signature is valid and
A is attempting to disavow the signature s.

Fact 11.126 states that Protocol 11.125 achieves its desired objectives.

11.126 Fact Letm be a message and suppose that s is A’s (purported) signature onm.

(i) If s is a forgery, i.e., s 6= ma mod p, and ifA andB follow Protocol 11.125 correctly,
then w = w′ (and hence, B’s conclusion that s is a forgery is correct).

(ii) Suppose that s is indeed A’s signature for m, i.e., s = ma mod p. Suppose that
B follows Protocol 11.125 correctly, but that A does not. Then the probability that
w = w′ (and hence A succeeds in disavowing the signature) is only 1/q.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

478 Ch. 11 Digital Signatures

11.127 Note (security of undeniable signatures)

(i) The security of Algorithm 11.122 is dependent on the intractability of the discrete
logarithm problem in the cyclic subgroup of order q in Z∗p (see §3.6.6).

(ii) Suppose verifier B records the messages exchanged in step 2 of Algorithm 11.122,
and also the random values x1, x2 used in the protocol. A third partyC should never
accept this transcript from B as a verification of signature s. To see why this is the
case, it suffices to show howB could contrive a successful transcript of step 2 of Al-
gorithm 11.122 without the signer A’s participation. B chooses a messagem, inte-
gers x1, x2 and l in the interval [1, q−1], and computes s = ((mx1αx2)l

−1

y−x2)x
−1
1

mod p. The protocol message from B to A would be z = sx1yx2 mod p, and from
A toB would be w = zl mod p. Algorithm 11.122 will accept s as a valid signature
ofA for messagem. This argument demonstrates that signatures can only be verified
by interacting directly with the signer.

11.8.3 Fail-stop signature schemes

Fail-stop digital signatures are digital signatures which permit an entity A to prove that a
signature purportedly (but not actually) signed by A is a forgery. This is done by showing
that the underlying assumption on which the signature mechanism is based has been com-
promised. The ability to prove a forgery does not rely on any cryptographic assumption, but
may fail with some small probability; this failure probability is independent of the comput-
ing power of the forger. Fail-stop signature schemes have the advantage that even if a very
powerful adversary can forge a single signature, the forgery can be detected and the signing
mechanism no longer used. Hence, the term fail-then-stop is also appropriate. A fail-stop
signature scheme should have the following properties:

1. If a signer signs a message according to the mechanism, then a verifier upon checking
the signature should accept it.

2. A forger cannot construct signatures that pass the verification algorithm without do-
ing an exponential amount of work.

3. If a forger succeeds in constructing a signature which passes the verification test then,
with high probability, the true signer can produce a proof of forgery.

4. A signer cannot construct signatures which are at some later time claimed to be for-
geries.

Algorithm 11.130 is an example of a fail-stop mechanism. As described, it is a one-time sig-
nature scheme, but there are ways to generalize it to allow multiple signings; using authen-
tication trees is one possibility (see §11.6.3). The proof-of-forgery algorithm is presented
in Algorithm 11.134.

11.128 Algorithm Key generation for Algorithm 11.130

SUMMARY: key generation is divided between entity A and a trusted third party (TTP).

1. The TTP should do the following:

(a) Select primes p and q such that q divides (p − 1) and the discrete logarithm
problem in Z∗q is intractable.

(b) (Select a generator α for the cyclic subgroupG of Z∗p having order q.)
(i) Select a random element g ∈ Z∗p and compute α = g(p−1)/q mod p.

(ii) If α = 1 then go to step (i).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.8 Signatures with additional functionality 479

(c) Select a random integer a, 1 ≤ a ≤ q − 1, and compute β = αa mod p. The
integer a is kept secret by the TTP.

(d) Send (p, q, α, β) in the clear to entity A.

2. Entity A should do the following:

(a) Select random secret integers x1, x2, y1, y2 in the interval [0, q − 1].
(b) Compute β1 = αx1βx2 and β2 = αy1βy2 mod p.
(c) A’s public key is (β1, β2, p, q, α, β); A’s private key is the quadruple
x = (x1, x2, y1, y2).

11.129 Note (TTP’s secret information) Assuming that the discrete logarithm problem in the sub-
group of order q in Z∗p is intractable in Algorithm 11.128, the only entity which knows a,
the discrete logarithm of β to the base α, is the TTP.

11.130 Algorithm Fail-stop signature scheme (van Heijst-Pedersen)

SUMMARY: this is a one-time digital signature scheme whose security is based on the dis-
crete logarithm problem in the subgroup of order q in Z∗p.

1. Signature generation. To sign a messagem ∈ [0, q− 1], A should do the following:

(a) Compute s1,m = x1 +my1 mod q and s2,m = x2 +my2 mod q.
(b) A’s signature form is (s1,m, s2,m).

2. Verification. To verify A’s signature (s1,m, s2,m) onm, B should do the following:

(a) Obtain A’s authentic public key (β1, β2, p, q, α, β).
(b) Compute v1 = β1βm2 mod p and v2 = αs1,mβs2,m mod p.
(c) Accept the signature if and only if v1 = v2.

Proof that signature verification works.

v1 ≡ β1β
m
2 ≡ (α

x1βx2)(αy1βy2)m ≡ αx1+my1βx2+my2

≡ αs1,mβs2,m ≡ v2 (mod p).

Algorithm 11.130 is a one-time signature scheme since A’s private key x can be com-
puted if two messages are signed using x. Before describing the algorithm for proof of
forgery (Algorithm 11.134), a number of facts are needed. These are given in Fact 11.131
and illustrated in Example 11.132.

11.131 Fact (number of distinct quadruples representing a public key and a signature) Suppose
thatA’s public key in Algorithm 11.130 is (β1, β2, p, q, α, β) and private key is the quadru-
ple x = (x1, x2, y1, y2).

(i) There are exactly q2 quadruples x′ = (x′1, x
′
2, y

′
1, y

′
2)with x′1, x

′
2, y

′
1, y

′
2 ∈ Zq which

yield the same portion (β1, β2) of the public key.
(ii) Let T be the set of q2 quadruples which yield the same portion of the public key
(β1, β2). For eachm ∈ Zq , there are exactly q quadruples in T which give the same
signature (s1,m, s2,m) form (where a signature is as described in Algorithm 11.130).
Hence, the q2 quadruples in T give exactly q different signatures form.

(iii) Letm′ ∈ Zq be a message different fromm. Then the q quadruples in T which yield
A’s signature (s1,m, s2,m) form, yield q different signatures form′.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

480 Ch. 11 Digital Signatures

11.132 Example (illustration of Fact 11.131) Let p = 29 and q = 7. α = 16 is a generator of
the subgroup of order q in Z∗p. Take β = α5 mod 29 = 23. Suppose A’s private key is
x = (2, 3, 5, 2); A’s public key is β1 = α2β3 mod 29 = 7, β2 = α5β2 mod 29 = 16.
The following table lists the q2 = 49 quadruples which give the same public key.

1603 2303 3003 4403 5103 6503 0203
1610 2310 3010 4410 5110 6510 0210
1624 2324 3024 4424 5124 6524 0224
1631 2331 3031 4431 5131 6531 0231
1645 2345 3045 4445 5145 6545 0245
1652 2352 3052 4452 5152 6552 0252
1666 2366 3066 4466 5166 6566 0266

If the 49 quadruples of this table are used to sign the messagem = 1, exactly q = 7 sig-
nature pairs (s1,m, s2,m) arise. The next table lists the possibilities and those quadruples
which generate each signature.

signature pair (2, 6) (3, 3) (4, 0) (5, 4) (6, 1) (0, 5) (1, 2)

quadruples 1610 1624 1631 1645 1652 1666 1603
2303 2310 2324 2331 2345 2352 2366
3066 3003 3010 3024 3031 3045 3052
4452 4466 4403 4410 4424 4431 4445
5145 5152 5166 5103 5110 5124 5131
6531 6545 6552 6566 6503 6510 6524
0224 0231 0245 0252 0266 0203 0210

The next table lists, for each message m′ ∈ Z7, all signature pairs for the 7 quadruples
which yield A’s signature (0, 5) form = 1.

m′

quadruple 0 1 2 3 4 5 6

1666 16 05 64 53 42 31 20
2352 23 05 50 32 14 66 41
3045 30 05 43 11 56 24 62
4431 44 05 36 60 21 52 13
5124 51 05 22 46 63 10 34
6510 65 05 15 25 35 45 55
0203 02 05 01 04 00 03 06

�

11.133 Note (probability of successful forgery in Algorithm 11.130) Suppose that an adversary
(the forger) wishes to deriveA’s signature on some messagem′. There are two possibilities
to consider.

(i) The forger has access only to the signer’s public key (i.e., the forger is not in pos-
session of a message and valid signature). By Fact 11.131(ii), the probability that
the signature created by the adversary is the same as A’s signature for m′ is only
q/q2 = 1/q; this probability is independent of the adversary’s computational re-
sources.

(ii) The forger has access to a message m and a signature (s1,m, s2,m) created by the
signer. By Fact 11.131(iii), the probability that the signature created by the adversary
is the same asA’s signature form′ is only 1/q; again, this probability is independent
of the adversary’s computational resources.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.9 Notes and further references 481

Suppose now that an adversary has forged A’s signature on a message, and the signa-
ture passed the verification stage in Algorithm 11.130. The objective is that A should be
able to prove that this signature is a forgery. The following algorithm shows how A can,
with high probability, use the forged signature to derive the secret a. Since awas supposed
to have been known only to the TTP (Note 11.129), it serves as proof of forgery.

11.134 Algorithm Proof-of-forgery algorithm for Algorithm 11.130

SUMMARY: to prove that a signature s′ = (s′1,m, s
′
2,m) on a messagem is a forgery, the

signer derives the integer a = logα β which serves as proof of forgery.
The signer (entity A) should do the following:

1. Compute a signature pair s = (s1,m, s2,m) for message m using its private key x
(see Algorithm 11.128).

2. If s = s′ return to step 1.
3. Compute a = (s1,m − s′1,m) · (s2,m − s

′
2,m)

−1 mod q.

Proof that Algorithm 11.134 works. By Fact 11.131(iii), the probability that s = s′ in
step 1 of Algorithm 11.134 is 1/q. From the verification algorithm (Algorithm 11.130),
αs1,mβs2,m ≡ αs

′
1,mβs

′
2,m (mod p) or αs1,m−s

′
1,m ≡ αa(s

′
2,m−s2,m) (mod p) or s1,m −

s′1,m ≡ a(s
′
2,m − s2,m) (mod q). Hence, a = (s1,m − s′1,m) · (s2,m − s

′
2,m)

−1 mod q.

11.135 Remark (disavowing signatures) In order for a signer to disavow a signature that it created
with Algorithm 11.134, an efficient method for computing logarithms is required.

11.9 Notes and further references
§11.1

The concept of a digital signature was introduced in 1976 by Diffie and Hellman [344,
345]. Although the idea of a digital signature was clearly articulated, no practical realization
emerged until the 1978 paper by Rivest, Shamir, and Adleman [1060]. Digital signatures
appear to have been independently discovered by Merkle [849, 850] but not published until
1978. One of Merkle’s contributions is discussed in §11.6.2. Other early research was due
to Lamport [738], Rabin [1022, 1023], and Matyas [801].

A detailed survey on digital signatures is given by Mitchell, Piper, and Wild [882]. A thor-
ough discussion of a selected subset of topics in the area is provided by Stinson [1178].
Other sources which provide a good overview are Meyer and Matyas [859], Goldwasser,
Micali, and Rivest [484], Rivest [1054], and Schneier [1094].

§11.2
The original proposal for a digital signature scheme by Diffie and Hellman [344] consid-
ered only digital signatures with message recovery. The first discussion of digital signature
schemes with appendix (although the term was not used per se) appears to be in the patent
by Merkle and Hellman [553]. Davies and Price [308] and Denning [326] give brief intro-
ductions to digital signatures but restrict the discussion to digital signature schemes with
message recovery and one-time digital signature schemes. Mitchell, Piper, and Wild [882]
and Stinson [1178] give abstract definitions of digital signature schemes somewhat less gen-
eral than those given in §11.2.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

482 Ch. 11 Digital Signatures

Excellent discussions on attacks against signature schemes are provided by Goldwasser,
Micali, and Rivest [484] and Rivest [1054]. The former refers to the discovery of a func-
tionally equivalent signing algorithm as universal forgery, and separates chosen-message
attacks into generic chosen-message attacks and directed chosen-message attacks.

Many proposed digital signature schemes have been shown to be insecure. Among the most
prominent of these are the Merkle-Hellman knapsack scheme proposed by Merkle and Hell-
man [857], shown to be totally breakable by Shamir [1114]; the Shamir fast signature sch-
eme [1109], shown to be totally breakable by Odlyzko [939]; and the Ong-Schnorr-Shamir
(OSS) scheme [958], shown to be totally breakable by Pollard (see Pollard and Schnorr
[988]). Naccache [914] proposed a modification of the Ong-Schnorr-Shamir scheme to
avoid the earlier attacks.

§11.3
The RSA signature scheme (Algorithm 11.19), discovered by Rivest, Shamir, and Adleman
[1060], was the first practical signature scheme based on public-key techniques.

The multiplicative property of RSA (§11.3.2(ii)) was first exploited by Davida [302]. Den-
ning [327] reports and expands on Davida’s attack and credits Moore with a simplification.
Gordon [515] uses the multiplicative property of RSA to show how to create public-key pa-
rameters and associated (forged) certificates if the signing authority does not take adequate
precautions. The existential attack on RSA signatures having certain types of redundancy
(Example 11.21) is due to de Jonge and Chaum [313]. Evertse and van Heijst [381] consider
other types of attacks on RSA signatures which also rely on the multiplicative property.

The reblocking problem (§11.3.3(i)) is discussed by Davies and Price [308], who attribute
the method of prescribing the form of the modulus to Guillou. An alternate way of con-
structing an (even) t-bit modulus n = pq having a 1 in the high-order position followed by
k 0’s is the following. Construct an integer u = 2t + w2t/2 for some randomly selected
(t/2 − k)-bit integer w. Select a (t/2)-bit prime p, and divide p into u to get a quotient
q and a remainder r (i.e., u = pq + r). If q is a prime number, then n = pq is an RSA
modulus of the required type. For example, if t = 14 and k = 3, let u = 214 +w27 where
w = 11. If p = 89, then q = 199 and n = pq = 17711. The binary representation of n is
100010100101111.

The Rabin public-key signature scheme (Algorithm 11.25) is due to Rabin [1023]. Verifica-
tion of signatures using the Rabin scheme is efficient since only one modular multiplication
is required (cf. Note 11.33). Beller and Yacobi [101] take advantage of this aspect in their
authenticated key transport protocol (see §12.5.3).

The modified-Rabin signature scheme (Algorithm 11.30) is derived from the RSA variant
proposed by Williams [1246] (see also page 315). The purpose of the modification is to
provide a deterministic procedure for signing. A similar methodology is incorporated in
ISO/IEC 9796 (§11.3.5). The modified scheme can be generalized to other even public ex-
ponents besides e = 2. If gcd(e, (p − 1)(q − 1)/4) = 1, then exponentiation by e is a
permutation of Qn.

ISO/IEC 9796 [596] became an international standard in October of 1991. This standard
provides examples based on both the RSA and Rabin digital signature mechanisms. Al-
though the standard permits the use of any digital signature scheme with message recovery
which provides a t-bit signature for a b t2c-bit message, the design was specifically tailored
for the RSA and Rabin mechanisms. For design motivation, see Guillou et al. [525]. At the
time of publication of ISO/IEC 9796, no other digital signature schemes providing message
recovery were known, but since then several have been found; see Koyama et al. [708].

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.9 Notes and further references 483

ISO/IEC 9796 is effective for signing messages which do not exceed a length determined
by the signature process. Quisquater [1015] proposed a method for extending the utility of
ISO/IEC 9796 to longer messages. Briefly, the modified scheme is as follows. Select a one-
way hash function hwhich maps bitstrings of arbitrary length to k-bitstrings. If the signing
capability of ISO/IEC 9796 is t bits and m is an n-bit message where n > t, then m is
partitioned into two bitstringsmc andms, wheremc is (n− t+k) bits long. Compute d =
h(m) and formm′ = ms‖d;m′ is a string of bitlength t. Signm′ using ISO/IEC 9796 to
get J . The signature on messagem ismc‖J . This provides a randomized digital signature
mechanism with message recovery, where the hash function provides the randomization.

§11.3.6 is from PKCS #1 [1072]. This document describes formatting for both encryption
and digital signatures but only those details pertinent to digital signatures are mentioned
here. The specification does not include message recovery as ISO/IEC 9796 does. It also
does not specify the size of the primes, how they should be generated, nor the size of public
and private keys. It is suggested that e = 3 or e = 216 + 1 are widely used. The only
attacks mentioned in PKCS #1 (which the formatting attempts to prevent) are those by den
Boer and Bosselaers [324], and Desmedt and Odlyzko [341].

§11.4
The Feige-Fiat-Shamir digital signature scheme (Algorithm 11.40), proposed by Feige,
Fiat, and Shamir [383], is a minor improvement of the Fiat-Shamir signature scheme [395],
requiring less computation and providing a smaller signature. Fiat and Shamir [395] prove
that their scheme is secure against existential forgery provided that factoring is intractable
and that h is a truly random function. Feige, Fiat, and Shamir [383] prove that their modi-
fication has the same property.

Note 11.44 was suggested by Fiat and Shamir [395]. Note 11.45 is due to Micali and Shamir
[868], who suggest that only the modulusnA of entityA needs to be public if v1, v2, . . . , vk
are system-wide parameters. Since all entities have distinct moduli, it is unlikely that vj ∈
Qn, 1 ≤ j ≤ k, for many different values of n. To overcome this problem, Micali and
Shamir claim that some perturbation of k public values is possible to ensure that the result-
ing values are quadratic residues with respect to a particular modulus, but do not specify
any method which provides the necessary perturbation.

The GQ signature scheme (Algorithm 11.48) is due to Guillou and Quisquater [524].

§11.5
The DSA (Algorithm 11.56) is due to Kravitz [711] and was proposed as a Federal Informa-
tion Processing Standard in August of 1991 by the U.S. National Institute for Science and
Technology. It became the Digital Signature Standard (DSS) in May 1994, as specified in
FIPS 186 [406]. Smid and Branstad [1157] comment that the DSA was selected based on
a number of important factors: the level of security provided, the applicability of patents,
the ease of export from the U.S., the impact on national security and law enforcement, and
the efficiency in a number of government and commercial applications. They provide a
comparison of the computational efficiencies of DSA and RSA and address a number of
negative responses received during the FIPS public comment period.

Naccache et al. [916] describe a number of techniques for improving the efficiency of the
DSA. For example, the computation of k−1 mod q in step 1c of Algorithm 11.56 can be re-
placed by the random generation of an integer b, the computation of u = bk mod q and s =
b · {h(m) + ar} mod q. The signature is (r, s, u). The verifier computes u−1 mod q and
u−1s mod q = s̃. Verification of the signature (r, s̃) now proceeds as in Algorithm 11.56.
This variant might be useful for signature generation in chipcard applications where com-
puting power is limited. Naccache et al. also propose the idea of use and throw coupons

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

484 Ch. 11 Digital Signatures

which eliminate the need to compute r = (αk mod p) mod q. Since this exponentiation
is the most computationally intensive portion of DSA signature generation, use and throw
coupons greatly improve efficiency. Coupons require storage, and only one signature can
be created for each coupon. If storage is limited (as is often the case), only a fixed number
of DSA signatures can be created with this method.

Béguin and Quisquater [82] show how to use an insecure server to aid in computations asso-
ciated with DSA signature generation and verification. The method accelerates the compu-
tation of modular multiplication and exponentiation by using an untrusted auxiliary device
to provide the majority of the computing. As such, it also applies to schemes other than
DSA. Arazi [54] shows how to integrate a Diffie-Hellman key exchange into the DSA.

The ElGamal digital signature scheme (Algorithm 11.64) was proposed in 1984 by ElGamal
[368]. ElGamal [368], Mitchell, Piper, and Wild [882], and Stinson [1178] comment further
on its security.

Note 11.66(iv) is due to Bleichenbacher [153], as is Note 11.67(iii), which is a special case
of the following more general result. Suppose p is a prime, α is a generator of Z∗p, and y
is the public key of entity A for an instance of the ElGamal signature scheme. Suppose
p − 1 = bq and logarithms in the subgroup of order b in Z∗p can be efficiently computed.
Finally, suppose that a generator β = cq for some c, 0 < c < b, and an integer t are known
such that βt ≡ α (mod p). For messagem, the pair (r, s) with r = β and s = t · {h(m)−
cqz} mod (p−1)where z satisfies αqz ≡ yq (mod p) is a signature for messagemwhich
will be accepted by Algorithm 11.64. Bleichenbacher also describes how a trapdoor could
be constructed for the ElGamal signature scheme when system-wide parameters p and α
are selected by a fraudulent trusted third party.

Variations of the ElGamal signing equation described in §11.5.2 were proposed by ElGamal
[366], Agnew, Mullin, and Vanstone [19], Kravitz [711], Schnorr [1098], and Yen and Laih
[1259]. Nyberg and Rueppel [938] and, independently, Horster and Petersen [564], placed
these variations in a much more general framework and compared their various properties.

ElGamal signatures based on elliptic curves over finite fields were first proposed by Koblitz
[695] and independently by Miller [878] in 1985. A variation of the DSA based on elliptic
curves and referred to as the ECDSA is currently being drafted for an IEEE standard.

The Schnorr signature scheme (Algorithm 11.78), due to Schnorr [1098], is derived from
an identification protocol given in the same paper (see §10.4.4). Schnorr proposed a prepro-
cessing method to improve the efficiency of the signature generation in Algorithm 11.78.
Instead of generating a random integer k and computing αk mod p for each signature, a
small number of integers ki and αki mod p, 1 ≤ i ≤ t, are precomputed and stored, and
subsequently combined and refreshed for each signature. De Rooij [315] showed that this
preprocessing is insecure if t is small.

Brickell and McCurley [207] proposed a variant of the Schnorr scheme. Their method uses
a prime p such that p−1 is hard to factor, a prime divisor q of p−1, and an elementα of order
q inZ∗p. The signing equation is s = ae+k mod (p− 1) as opposed to the Schnorr equation
s = ae+k mod q. While computationally less efficient than Schnorr’s, this variant has the
advantage that its security is based on the difficulty of two hard problems: (i) computing
logarithms in the cyclic subgroup of order q in Z∗p; and (ii) factoring p−1. If either of these
problems is hard, then the problem of computing logarithms in Z∗p is also hard.

Okamoto [949] describes a variant of the Schnorr scheme which he proves to be secure,
provided that the discrete logarithm problem in Z∗p is intractable and that correlation-free
hash functions exist (no instance of a correlation-free hash function is yet known). Signa-

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.9 Notes and further references 485

ture generation and verification are not significantly more computationally intensive than
in the Schnorr scheme; however, the public key is larger.

The Nyberg-Rueppel scheme (Algorithm 11.81) is due to Nyberg and Rueppel [936]. For
an extensive treatment including variants, see Nyberg and Rueppel [938]. They note that
unlike RSA, this signature scheme cannot be used for encryption since the signing trans-
formation S has a left inverse, namely, the verification transformation V , but S is not the
left inverse of V ; in other words, V (S(m)) = m for all m ∈ Zp, but S(V (m)) 6= m for
most m ∈ Zp. The second paper also defines the notion of strong equivalence between
signature schemes (two signature schemes are called strongly equivalent if the signature
on a messagem in one scheme can be transformed into the corresponding signature in the
other scheme, without knowledge of the private key), and discusses how to modify DSA to
provide message recovery.

Some digital signature schemes make it easy to conceal information in the signature which
can only be recovered by entities privy to the concealment method. Information communi-
cated this way is said to be subliminal and the conveying mechanism is called a subliminal
channel. Among the papers on this subject are those of Simmons [1139, 1140, 1147, 1149].
Simmons [1139] shows that if a signature requires l1 bits to convey and provides l2 bits of
security, then l1− l2 bits are available for the subliminal channel. This does not imply that
all l1−l2 bits can, in fact, be used by the channel; this depends on the signature mechanism.
If a large proportion of these bits are available, the subliminal channel is said to be broad-
band; otherwise, it is narrowband. Simmons [1149] points out that ElGamal-like signature
schemes provide a broadband subliminal channel. For example, if the signing equation is
s = k−1 · {h(m)− ar} mod (p− 1) where a is the private key known to both the signer
and the recipient of the signature, then k can be used to carry the subliminal message. This
has the disadvantage that the signer must provide the recipient with the private key, allow-
ing the recipient to sign messages that will be accepted as having originated with the signer.
Simmons [1147] describes narrowband channels for the DSA.

§11.6
Rabin [1022] proposed the first one-time signature scheme (Algorithm 11.86) in 1978.
Lamport [738] proposed a similar mechanism, popularized by Diffie and Hellman [347],
which does not require interaction with the signer for verification. Diffie suggested the use
of a one-way hash function to improve the efficiency of the method. For this reason, the
mechanism is often referred to as the Diffie-Lamport scheme. Lamport [738] also describes
a more efficient method for one-time digital signatures, which was rediscovered by Bos
and Chaum [172]. Bos and Chaum provide more substantial modifications which lead to a
scheme that can be proven to be existentially unforgeable under adaptive chosen-message
attack, provided RSA is secure.

Merkle’s one-time signature scheme (Algorithm 11.92) is due to Merkle [853]; see also
§15.2.3(vi). The modification described in Note 11.95 is attributed by Merkle [853] to Win-
ternitz. Bleichenbacher and Maurer [155] generalize the methods of Lamport, Merkle, and
Winternitz through directed acyclic graphs and one-way functions.

Authentication trees were introduced by Merkle [850, 852, 853] at the time when public-
key cryptography was in its infancy. Since public-key cryptography and, in particular, dig-
ital signatures had not yet been carefully scrutinized, it seemed prudent to devise alternate
methods for providing authentication over insecure channels. Merkle [853] suggests that
authentication trees provide as much versatility as public-key techniques and can be quite
practical. An authentication tree, constructed by a single user to authenticate a large num-
ber of public values, requires the user to either regenerate the authentication path values

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

486 Ch. 11 Digital Signatures

at the time of use or to store all authentication paths and values in advance. Merkle [853]
describes a method to minimize the storage requirements if public values are used in a pre-
scribed order.

The GMR scheme (Algorithm 11.102) is due to Goldwasser, Micali, and Rivest [484], who
introduced the notion of a claw-free pair of permutations, and described the construction of
a claw-free pair of permutations (Example 11.99) based on the integer factorization prob-
lem. Combining the one-time signature scheme with tree authentication gives a digital sig-
nature mechanism which Goldwasser, Micali and Rivest prove existentially unforgeableun-
der an adaptive chosen-message attack. In order to make their scheme more practical, the
tree authentication structure is constructed in such a way that the system must retain some
information about preceding signatures (i.e., memory history is required). Goldreich [465]
suggested modifications to both the general scheme and the example based on integer fac-
torization (Example 11.99), removing the memory constraint and, in the latter, improving
the efficiency of the signing procedure. Bellare and Micali [92] generalized the GMR sch-
eme by replacing the claw-free pair of permutations by any trapdoor one-way permutation
(the latter requiring a weaker cryptographic assumption). Naor and Yung [920] further gen-
eralized the scheme by requiring only the existence of a one-way permutation. The most
general result is due to Rompel [1068], who proved that digital signature schemes which
are secure against an adaptive chosen-message attack exist if and only if one-way functions
exist. Although attractive in theory (due to the fact that secure digital signatures can be re-
duced to the study of a single structure), none of these methods seem to provide techniques
as efficient as RSA and other methods which, although their security has yet to be proven
rigorously, have withstood all attacks to date.

On-line/off-line digital signatures (see also §15.2.3(ix)) were introduced by Even, Goldre-
ich, and Micali [377, 378] as a means to speed up the signing process in applications where
computing resources are limited and time to sign is critical (e.g., chipcard applications). The
method uses both one-time digital signatures and digital signatures arising from public-key
techniques (e.g., RSA, Rabin, DSA). The off-line portion of the signature generation is to
create a set of validation parameters for a one-time signature scheme such as the Merkle sch-
eme (Algorithm 11.92), and to hash this set and sign the resulting hash value using a public-
key signature scheme. Since the public-key signature scheme is computationally more in-
tensive, it is done off-line. The off-line computations are independent of the message to be
signed. The on-line portion is to sign the message using the one-time signature scheme and
the validation parameters which were constructed off-line; this part of the signature process
is very efficient. Signatures are much longer than would be the case if only the public-key
signature mechanism were used to sign the message directly and, consequently, bandwidth
requirements are a disadvantage of this procedure.

§11.7
The arbitrated digital signature scheme of Algorithm 11.109 is from Davies and Price [308],
based on work by Needham and Schroeder [923].

ESIGN (Algorithm 11.113; see also §15.2.2(i)), proposed by Okamoto and Shiraishi [953],
was motivated by the signature mechanism OSS devised earlier by Ong, Schnorr, and Sha-
mir [958]. The OSS scheme was shown to be insecure by Pollard in a private communi-
cation. Ong, Schnorr, and Shamir [958] modified their original scheme but this too was
shown insecure by Estes et al. [374]. ESIGN bases its security on the integer factorization
problem and the problem of solving polynomial inequalities. The original version [953]
proposed k = 2 as the appropriate value for the public key. Brickell and DeLaurentis [202]
demonstrated that this choice was insecure. Their attack also extends to the case k = 3;
see Brickell and Odlyzko [209, p.516]. Okamoto [948] revised the method by requiring

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§11.9 Notes and further references 487

k ≥ 4. No weaknesses for these values of k have been reported in the literature. Fujioka,
Okamoto, and Miyaguchi [428] describe an implementation of ESIGN which suggests that
it is twenty times faster than RSA signatures with comparable key and signature lengths.

§11.8
Blind signatures (§11.8.1) were introduced by Chaum [242], who described the concept,
desired properties, and a protocol for untraceable payments. The first concrete realization
of the protocol (Protocol 11.119) was by Chaum [243]. Chaum and Pedersen [251] provide
a digital signature scheme which is a variant of the ElGamal signature mechanism (§11.5.2),
using a signing equation similar to the Schnorr scheme (§11.5.3), but computationally more
intensive for both signing and verification. This signature technique is then used to provide
a blind signature scheme.

The concept of a blind signature was extended by Chaum [245] to blinding for unantici-
pated signatures. Camenisch, Piveteau, and Stadler [228] describe a blind signature pro-
tocol based on the DSA (Algorithm 11.56) and one based on the Nyberg-Rueppel scheme
(Algorithm 11.81). Horster, Petersen, and Michels [563] consider a number of variants of
these protocols. Stadler, Piveteau, and Camenisch [1166] extend the idea of a blind signa-
ture to a fair blind signature where the signer in cooperation with a trusted third party can
link the message and signature, and trace the sender.

Chaum, Fiat, and Naor [250] propose a scheme for untraceable electronic cash, which al-
lows a participant A to receive an electronic cash token from a bank. A can subsequently
spend the token at a shop B, which need not be on-line with the bank to accept and verify
the authenticity of the token. When the token is cashed at the bank byB, the bank is unable
to associate it with A. If, however,A attempts to spend the token twice (double-spending),
A’s identity is revealed. Okamoto [951] proposes a divisible electronic cash scheme. A di-
visible electronic coin is an element which has some monetary value associated with it, and
which can be used to make electronic purchases many times, provided the total value of all
transactions does not exceed the value of the coin.

Undeniable signatures (§11.8.2) were first introduced by Chaum and van Antwerpen [252],
along with a disavowal protocol (Protocol 11.125). Chaum [246] shows how to modify
the verification protocol for undeniable signatures (step 2 of Algorithm 11.122) to obtain a
zero-knowledge verification.

One shortcoming of undeniable signature schemes is the possibility that the signer is un-
available or refuses to co-operate so that the signature cannot be verified by a recipient.
Chaum [247] proposed the idea of a designated confirmer signature where the signer des-
ignates some entity as a confirmer of its signature. If the signer is unavailable or refuses to
co-operate, the confirmer has the ability to interact with a recipient of a signature in order to
verify it. The confirmer is unable to create signatures for the signer. Chaum [247] describes
an example of designated confirmer signatures based on RSA encryption. Okamoto [950]
provides a more indepth analysis of this technique and gives other realizations.

A convertible undeniable digital signature, introduced by Boyar et al. [181], is an unde-
niable signature (§11.8.2) with the property that the signer A can reveal a secret piece of
information, causing all undeniable signatures signed byA to become ordinary digital sig-
natures. These ordinary digital signatures can be verified by anyone using only the public
key ofA and requiring no interaction with A in the verification process; i.e., the signatures
become self-authenticating. This secret information which is made available should not
permit anyone to create new signatures which will be accepted as originating from A. As
an application of this type of signature, consider the following scenario. Entity A signs all
documents during her lifetime with convertible undeniable signatures. The secret piece of

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

488 Ch. 11 Digital Signatures

information needed to convert these signatures to self-authenticating signatures is placed in
trust with her lawyer B. After the death of A, the lawyer can make the secret information
public knowledge and all signatures can be verified. B does not have the ability to alter
or create new signatures on behalf of A. Boyar et al. [181] give a realization of the con-
cept of convertible undeniable signatures using ElGamal signatures (§11.5.2) and describe
how one can reveal information selectively to convert some, but not all, previously created
signatures to self-authenticating ones.

Chaum, van Heijst, and Pfitzmann [254] provide a method for constructing undeniable sig-
natures which are unconditionally secure for the signer.

Fail-stop signatures were introduced by Waidner and Pfitzmann [1227] and formally de-
fined by Pfitzmann and Waidner [971]. The first constructions for fail-stop signatures used
claw-free pairs of permutations (Definition 11.98) and one-time signature methods (see
Pfitzmann and Waidner [972]). More efficient techniques were provided by van Heijst and
Pedersen [1201], whose construction is the basis for Algorithm 11.130; they describe three
methods for extending the one-time nature of the scheme to multiple signings. Van Heijst,
Pedersen, and Pfitzmann [1202] extended the idea of van Heijst and Pedersen to fail-stop
signatures based on the integer factorization problem.

Damgård [298] proposed a signature scheme in which the signer can gradually and verifi-
ably release the signature to a verifier.

Chaum and van Heijst [253] introduced the concept of a group signature. A group signature
has the following properties: (i) only members of a predefined group can sign messages; (ii)
anyone can verify the validity of a signature but no one is able to identify which member of
the group signed; and (iii) in case of disputes, the signature can be opened (with or without
the help of group members) to reveal the identity of the group member who signed it. Chen
and Pedersen [255] extended this idea to provide group signatures with additional function-
ality.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

